# TABLE OF CONTENTS

- Introduction ................................................................. 3
- Forward ........................................................................ 4
- Reporting Safety Defects ........................................... 4
- Coach Identification ................................................... 4
- Inspection ..................................................................... 5
- Operator's Compartment........................................... 7
- Tilt & Telescoping Steering ........................................ 8
- Instrument Panel & Controls .................................... 8
- Switch Panel ................................................................ 9
- Destination Signs ........................................................ 9
- Seats & Seat Belts ...................................................... 10
- Electrical Systems ..................................................... 13
- Light Bulb Data ......................................................... 14
- Doran Warning Light Monitor ................................ 15
- Circuit Breakers ......................................................... 19
- Mirrors & Mirror Adjustment ................................. 20
- Emergency Equipment.............................................. 22
- Emergency Exit .......................................................... 24
- Transpec Safety Vent .............................................. 24
- Wheelchair Lifts ........................................................ 25
- Stop Arms ................................................................ 25
- Front Access ............................................................... 28
- Access Doors ................................................................ 29
- Body Tie Down ............................................................. 29
- Towing or Pushing ...................................................... 30
- Doors .......................................................................... 30
- Vandal Locks ............................................................... 34
- Keeping Your Vehicle Looking New ...................... 35
- Engine Access .............................................................. 36
- Heaters ........................................................................ 38
- Windows & Windshields ........................................... 45
- Windshield Wipers ................................................... 49
- Lower Side Panel Repair Procedure ...................... 50
- Spare Tire Location & Removal .......................... 50
- Tires, Wheels & Rims .................. ............................ 52
- Jacking Instructions .................................................. 54
- Engine Operating Instructions ................................ 54
- Noise Emissions Warranty ...................................... 56
- Fuel & Lubricant Requirements ............................. 57
- Compressed Natural Gas ........................................ 57
- Allison Automatic Transmission ............................ 65
- Manual Five Speed Transmission ......................... 65
- Two Speed Rear Axle Shift Control .................... 70
- Air Brakes ................................................................. 73
- Hydraulic System ....................................................... 75
- Hydraulic Clutch Controls &
  Adjustment for Manual Transmissions .............. 77
- Radiator Fans ............................................................ 78
- Shutters ..................................................................... 79
- Cooling System ......................................................... 79
- All American Pitman Arm ..................................... 79
- Front Axle Stop & Steering Gear
  Automatic Poppet Adjustments ........................ 80
- Wheelbearing Adjustments ................................... 81
- Rear Axle Vent .......................................................... 81
- Ridewell Vehicle Air Suspension ....................... 82
- Scheduled Maintenance ............................................ 86
- Maintenance Service Keys ....................................... 89
- Quick Reference Maintenance Charts ............... 90
- Cummins Engine Maintenance Charts ............... 90
- John Deere 8.1 CNG Engine Maint. Chart .......... 91
- Suspension Maintenance Chart ......................... 92
- Engine Belt Chart ....................................................... 92
- Axle Maintenance Chart .......................................... 93
- Brake Maintenance Chart ....................................... 94
- Chassis Component Maintenance Chart .......... 95
- Body Component Maintenance Chart ............. 96, 97
- Wheelchair Lift Maintenance Chart ................. 97
- General Data .............................................................. 98
- Index ........................................................................... 99
Thank you for selecting the Blue Bird All American. Your All American is the result of mass transportation developments, which have been ongoing since 1927. The design and construction of the All American reflects Blue Bird’s concern for efficient, and above all, Safe Operation.

This manual has been prepared to acquaint you with various aspects of service, maintenance and operation. It explains the various features and controls which should be familiar to the operator before he/she attempts to drive the unit and will help keep your Blue Bird All American in top operating condition and help extend its service life.

Your Blue Bird All American may have all or some of the equipment described in this manual. Therefore, you may find maintenance data for equipment not installed on your bus. Text, illustrations and specifications in this manual are based on information available at the time of printing. We reserve the right to make changes at any time without notice. To obtain maintenance and parts information, refer to Blue Bird Chassis Maintenance Manual and Parts Catalog. You are encouraged to contact your Blue Bird distributor, if additional maintenance information or assistance is needed.

The complete line of Blue Bird Service Parts is available from your Blue Bird distributor. The use of original Blue Bird replacement parts and components will help insure that the design features inherent in the All American remain for the life of the vehicle.

Proper operation, service and maintenance is important to the safety and reliability of all motor vehicles. The information contained herein is provided as a reference for systems and components that require periodic service. The intervals given are manufacturer’s recommendations and should be considered maximum intervals. Actual operating conditions must be considered and maintenance intervals adjusted accordingly. Anytime a system does not perform satisfactorily, corrective service should be performed at once.

Familiarity with automobile operation and controls is not a prerequisite, but is assumed to be common knowledge to all who will be operating this coach. Basically, control and operation of both are the same, but some distinct differences must be recognized before operation of the coach is attempted.

Remember: The bus is 8 feet wide without outside mirrors and is 25 to 40 feet long. Therefore, it is 2 feet wider and 2 to 3 times as long as the average automobile. The driver sits in front of the wide track front axle, so the steering has a completely different feel. Acceleration will very likely be slower than that of an automobile. The feel of the brakes may differ from that which is familiar to the new operator. This makes it very important, from a safety standpoint, for him or her to become completely familiar with that function through experience before attempting passenger transit. The operator will observe other differences, but after acquiring basic familiarization and some practical experience, he will find the operation quickly becomes quite natural, comfortable and far from difficult.

CAUTION: No one should attempt to operate this coach without a thorough knowledge of all instruments and controls, without having had actual driving experience in this or a similar vehicle under supervision, and without having the appropriate license or permit to operate it. Do not drive the coach until the space in front, on the sides and in the rear is unobstructed. Most accidents occur because the operator did not ensure that there was no one in the way before driving.

This manual should be read before the operator attempts to drive the unit.

This manual provides you with the most current maintenance and operation information. We welcome your comments and suggestions regarding this manual. All correspondence should be directed to the Technical Services Department of Blue Bird Body Company, P.O. Box 937, Fort Valley, GA, 31030, Attn: TECHNICAL SERVICES.
FOREWORD

This Operator’s Manual provides some general, as well as specific, information regarding safe operation and maintenance of your Blue Bird bus. It does not address all items or situations that may arise and is not a substitute for proper driver and mechanic training. The exercise of care, common sense and good driving and working practices are required for safe operation.

If specific questions or concerns arise that are not adequately addressed in this manual, please contact your Blue Bird distributor. The distributor will answer your questions or put you in contact with the proper factory personnel.

Throughout this guide you will find CAUTIONS and WARNINGS. CAUTIONS are given to prevent you from making an error which could damage the vehicle and possibly cause personal injury. WARNINGS remind you to be especially careful to avoid personal injury.

Blue Bird Corporation offers many items as standard and optional equipment to meet state, federal and local specifications and individual customer requirements. Properly selected equipment can help insure reliable and safe transportation of passengers.

Some examples of this safety equipment are: stop arms, crossing guards, warning lights, warning light monitors, mirrors, first aid kits, fire extinguishers, warning reflectors, fusees, directional and brake lights, warning buzzers, vandal locks, emergency exits and seat belts.

It is the driver’s responsibility to insure that the safety items are in proper order. Equipment relating to safety should be checked for operation on a daily basis. Safety equipment may vary due to state and federal specifications, and individual customer requirements.

In addition, the driver/operator must insure that the loading area around the bus is clear of pedestrians before stopping and that all unloaded passengers are a safe distance away from the bus before moving.

REPORTING SAFETY DEFECTS

If you believe your vehicle has a safety defect which could cause a crash or could cause injury or death, you should immediately inform the National Highway Traffic Safety Administration (NHTSA) in addition to notifying Blue Bird Corporation.

If NHTSA receives similar complaints, it may open an investigation and, if it finds that a safety defect exists in a group of vehicles, it may order a recall and remedy campaign. However, NHTSA cannot become involved in individual problems between you, your dealer or Blue Bird Corporation.

To contact NHTSA you may either call the Auto Safety Hotline toll free at 1-800-424-9393 (or 366-0123 in Washington, D.C. area), or write to: NHTSA, U.S. Department of Transportation, Washington, D.C. 20590. You can also obtain other information about Motor Vehicle Safety from the hotline.

COACH IDENTIFICATION

The Vehicle Certification Plate certifies that the vehicle conforms to all applicable Federal Motor Vehicle Safety Standards in effect at the date of manufacture. Do not remove or deface this plate.
The **Body Serial** and **Service Number Plate** is located on the front upper inner panel above the windshield. Refer to the data on this plate for registration purposes or for replacement part information.

The **Axle Record** and **Chassis Service Number** Plate is located on the front upper inner panel above the windshield. Refer to the data on these plates for registration purposes or for replacement part information.

**INSPECTION**

**PRIOR TO PLACING THE NEW BUS IN SERVICE, PERFORM THE FOLLOWING:**

- Check suspension u-bolt torque.
- Check Ridewell suspension torque.
- Check brake adjustment.
- Check body tie-down bolts torque.

**DAILY INSPECTION**

In order to keep your bus in the best operating condition from the standpoint of safety, convenience, service and operating expense, it is recommended the following inspection procedures be followed on a daily basis. Any malfunctions or defects should be corrected before the next trip. Report needed services to responsible maintenance personnel.

- Check fuel level.
- Drain air tanks (cold weather).
- Check engine oil level.
- Check coolant level.
- Check automatic transmission fluid level.

**Look outside the bus:**

- Windshield, mirrors, front windows, head, tail, directional, and stop lights - wipe clean.
- Exhaust - tailpipe clear?
- Rear emergency door, open and close, check warning buzzer operation.
- Tire pressure and tread, OK? Lug nuts in place?
- Drain air brake tank.
- Look under bus - all clear?
- General outside appearance, clean for school bus identification?
- Mirrors - clean and adjusted?
Look inside the bus:
• Seat, floor - housekeeping. Steps and aisle clear?
• Emergency exits open & close, rear door, windows.
• Emergency equipment.
• Fire extinguisher pressure.
• First aid kit.
• Driver’s area - windshield, windows clean?
• Mirrors - clean and adjusted?
• Emergency doors/windows unlocked and operate freely?
• Do buzzers activate when exits are not fully latched?

Starting the engine:
• Be sure parking brakes are on.
• Put in Neutral.
• With key on, check: Fuel gauge OK? Check brake warning buzzer or light, neutral safety switch.
• Start engine - look, listen for trouble signs, check gauges.

With the engine running, check (from driver’s seat):
• Mirrors, interior and stepwell lights, service door seal.
• Steering feel OK? Noise?
• Horn, defroster & heater blower, windshield wiper operation.
• Brakes - pedal height & feel, gauge reading OK? Parking brake release, reset.

Outside checks required before you drive away:
• Turn signals - right & left, front & rear - clean & flashing?
• Flasher warning lights - front & rear - clean & flashing?
• Stop arm (if used) - clean & working?
• Headlights hi-lo beams.
• Stoplights & taillights - clean & working?
• Hazard flasher working?

Final check as you move the bus:
• Seat belt fastened?
• Brakes - Stop & hold?
• Steering feel OK? Unusual noises? Bus under control- tracking straight?
• Brake to a stop. All gauges OK?

Remember: Safety on the road also depends on you. Observe weather and road condition and drive accordingly. Be physically and mentally alert. When backing in vicinity of congestion or pedestrians use outside monitor or director. Look around before driving away from where you are parked and observe all traffic rules and regulations.

**WEEKLY INSPECTION**
• Drain air tanks (warm weather).
• Check tires.
• Inspect seat cushion attachments for tightness.
• Inspect seat belts and buckles.
• Check fuel water separator.
• Check windshield washer fluid level.
OPERATOR’S COMPARTMENT

1. Driver’s seat.
2. Switch panel.
3. Windshield wiper switch - operates windshield wiper & washer.
4. Driver’s window defroster - directs air flow to driver’s window.
5. Driver’s foot warmer, window defroster control - controls flow of air.
6. Horn button - sounds electric horn.
7. Instrument panel.
8. Hazard signal switch - activates emergency warning systems.
9. Parking brake - prevents unit from rolling when parked.
10. Automatic transmission shift control (range selector).
11. Driver’s fresh air controls - operates driver’s fresh air vent.
13. Brake pedal or air treadle - applies service brakes.
14. Dimmer switch - selects headlight high or low beam.
15. Tilt and telescoping lever.
16. Hand throttle - raises engine idle speed. (AAFE only)
WARNING: Do not use throttle lock as means of cruise control. Always release throttle lock before putting vehicle in motion.
17. High beam - indicates headlights on bright.
18. Low air - warning indicates air pressure in system is low.
20. Engine warning - indicates low oil pressure or high water temperature.
21. Refill sander - warning, level of sand in sanders is low.
22. Right turn indicator.
23. Left turn indicator.

NOT ILLUSTRATED
- Door control.
- Wig-Wag - low air pressure warning.
- Reservoir drain valve.
- Warning light monitor - indicates whether warning lights are working.
- Inside mirror.

- Driver’s arm rest.
- Turn signal lever - operates turn signals.
- Fresh air control for front heaters - operates fresh air vent.
- Fusee canister.
- Reflector flares and flags.
- PA system - used to address.
**TILT & TELESCOPING STEERING**

To adjust steering wheel position, use the tilting lever located on the left side of steering mounting bracket. Press lever downward to unlock steering column. Move column to one of four positions and release lever. To raise or lower the steering wheel position, pull up on the tilting lever. This will enable you to raise or lower the steering wheel to one of its seven positions.

**INSTRUMENT PANEL & CONTROLS**

**INSTRUMENT PANEL WITH DUAL SCALE GAUGES**

The speed indicator is measured in miles per hour and kilometers per hour. All temperature gauges are measured in degrees Fahrenheit and degrees Celsius. All pressure gauges are measured in pounds per square inch and kilopascals (kilo newtons per square meter).

1. Speedometer - indicates vehicle speed.
2. Air pressure gauge, front - indicates air system pressure.
3. Air pressure gauge, rear - indicates air system pressure.
4. Tachometer with hourmeter - indicates engine RPM.
5. Voltmeter - indicates electrical system voltage.
6. Ammeter - indicates battery charge and discharge, optional.
7. Water temperature gauge - indicates engine coolant temperature.
8. Oil pressure gauge - indicates oil pressure.
12. Air Control Accelerator - increases engine RPM. (AARE only) (see ENGINE HIGH IDLE SWITCH)
13. Transmission Oil Temp Gauge - indicates transmission oil temperature.

**WARNING:** In the case of an air reserve failure, the low air pressure warning buzzer will sound and warning light illuminate, giving an indication that trouble is evident and the respective air gauge located on the dash will indicate which system has lost air pressure. The coach must not be operated under those conditions, but must be repaired before continuing operation.
SWITCH PANEL

1. Underseat Heater
2. Dome
3. Clearance Lamps
4. Warning Light Pilots
5. Manuals
6. Master
7. Heater Pump
8. Auxiliary Heater
9. Front Heater
10. Defroster
11. Fan
12. Wash/Wipe
13. Entrance Door
14. Exit Door
15. Pilot Light

DESTINATION SIGNS

Hinged Sign Front - Mounted on outside of front roof cap with internal control for changing sign. Periodically lubricate hinges and lever assembly with lightweight lubricating oil.

Hinged Sign Rear - Mounted on outside of rear roof cap, manually changed from outside. Periodically lubricate hinges with lightweight lubricating oil.

One Station Lighted Curtain - Replace bulbs as needed. May occasionally loosen and cause slack in the curtain due to vibration. To tighten curtain, loosen bolts, pull curtain tight, retighten bolts.

Roller Destination Sign with Lighted Curtain - Replace bulbs as needed. May occasionally require same adjustment as One Station Sign. Periodically lubricate roller gears with light grease, such as "White Lube," and hinges on access door with lightweight lubricating oil. To change sign, turn crank located on front upper inner panel above windshield to desired destination.

Two Station Sign - Front lighted, sign material masonite with lettering on both sides. Lubricate interior door hinge on front upper inner panel with lightweight lubricating oil.

Lighted "School Bus" Sign - Back lighted yellow plexiglass sign. Replace bulbs as needed. Lubricate interior door hinge on front upper inner panel with lightweight lubricating oil.

NOTE: All maintenance procedures to be done at 6 months or 6,000 mile intervals, whichever occurs first.
SEATS & SEAT BELTS

DRIVERS SEAT
1. Weight & Height Adjustment - To adjust, push valve knob in to raise seat and pull out to lower it. When adjusted properly, the seat should not top nor bottom against the end limits of the vertical travel under normal driving condition. Adjustment position should also provide for driving visibility and vehicle control.
2. Fore & Aft Adjustment - Hold lever to the left to adjust seat position forward or backward.
3. Back Angle Adjustment - Lean forward slightly to remove pressure from seat back. Hold handle rearward to adjust to any position within range.
4. Cushion Tilt Adjustment - Rotate seat tilt knob to decrease or to increase seat tilt.
5. Lumbar Adjustment - Rotate knob forward to increase or rearward to decrease the support in the lumbar area.

WARNING: Do not attempt to adjust seat while vehicle is in motion. Do not adjust height adjustment while sitting in driver’s seat. Keep feet and other items away from height adjustment handles and pedals while vehicle is in motion.

DRIVER'S SEAT LUBRICATION
NOTE: For optional Blue Bird driver's seat.

Moving parts of the driver’s seat require lubrication for ease of operation, as well as, longevity of the seat and prevention of excessive wear.

Currently available white lithium-based grease in an aerosol can, gives excellent coverage, when carefully directed into moving part joints. The very light coating of lubrication provided by aerosol-carried solvent-type solution works very well for penetrating into a joint and cleaning away dirt, but should only be depended on for lubrication, if frequently applied. A common 10W30 or 10W40 motor oil will provide good lubrication.

Remember that all moving part joints, tilt pivots, slide forward/back adjustment and vertical motion pivots (4 total) require lubrication. This should be done every six months or 6,000 miles, whichever occurs first, with a lithium-based grease in aerosol form.
**DRIVER’S SEAT BELT OPERATION**

Driver’s seat belt should be worn at all times when the vehicle is being driven.

Blue Bird driver’s seat belts have automatic locking retractors and are self-adjusting. They also have an anti-cinch device which prevents the belt from uncomfortable tightening as you drive. To use, withdraw ample length of belt from retractor or retractors to allow engagement of buckle halves. Engage buckle halves and allow retractor to withdraw belt to a snug fit. Attempt to pull belt from retractor after it has been withdrawn to assure the automatic locking mechanism is operating properly.

The buckle can be released by pushing button in center of buckle.

**DRIVER’S SEAT BELT WITH SHOULDER HARNESS (If so equipped)**

Driver’s seat belt should be worn at all times when the vehicle is being driven.

Driver’s seat belt shoulder harness is emergency locking; lap belt may be either emergency locking or automatic locking depending on the option chosen. The emergency locking retractor used for all shoulder harnesses and specified lap belts is dual sensitive. Emergency locking retractor engages when the vehicle tips 15 degrees or more or if belt speed exceeds a preset rate. Automatic locking retractors for specified lap belts are self adjusting. Adjust the shoulder belt bracket upward for taller drivers, downward for shorter drivers or until maximum comfort is achieved.

To use, withdraw ample length of belt from retractor or retractors to allow engagement of buckle halves. Engage buckle halves and allow retractor to draw belt to a snug fit.

The buckle is released by pushing the button in the center of the buckle.

**PASSENGER SEAT BELT OPERATION (If so equipped)**

Individual lap belts for passengers are retractable or non-retractable depending on option ordered. Insert the catch into the buckle, test for assurance of latch fit and pull loose end of strap until belt fits snugly across the lower hips. The buckle can be released, by pushing button in center of buckle. The adjustable end can be moved outward on its strap by turning 90 degrees to the strap and pulling.

**SEAT BELT INSPECTION & MAINTENANCE**

Inspect seat belts and their attachments on a weekly basis. Check seat belt buckles and adjustability to insure proper operation. If necessary, lubricate buckle with a graphite lubricant. When buckle is found to be inoperable, replace immediately. If there are any defects in the webbing (i.e. torn or frayed), the seat belt must be replaced as soon as possible to ensure passenger safety. Hand wash webbing with warm water and mild soap. Rinse thoroughly and dry in the shade. Do not bleach or redye, because such processing may severely weaken the assembly.

**WARNING:** Be sure the lap belt is fitted snugly around the hips, not the waist. Failure to do so may increase the chance of injury in the event of a collision. Do not bleach or redye, because such processing may severely weaken the assembly.

**SEAT INSPECTION & MAINTENANCE**

Blue Bird seats are built to meet Federal Motor Vehicle Safety Standards. In order to provide even safer passenger transportation, the following guidelines should be met.

1. Inspect and retighten seat leg and wall side mounting bolts every 90 days.
2. Inspect and retighten cushion attachments with a Phillips head screwdriver on a weekly basis.
3. Inspect upholstery for cuts and tears every 90 days. If torn, remove upholstery by removing the staples at the bottom front of seat back or bottom of cushion and remove cover. For installation of new cover, reverse this procedure.
4. School bus seats are equipped with a special foam back pad. Should this pad ever become damaged, it should be replaced with an approved replacement part. Aftermarket suppliers do exist and should be checked for compliance with federal standards.
**SEAT CARE AND CLEANING**

It is imperative that the interior of the bus be kept clean and seats are an important part of this maintenance. Regular cleaning and care will prolong the life of the seats and improve the general appearance.

**Everyday dirt and soil** - Most everyday soil and dirt may be removed with a soap and water solution. If the stain is persistent, a stiff bristle brush may be used. Fabric covered seats should be rinsed with clean water after stain is removed.

**Paint, tar and asphalt** - Remove stain immediately using a damp cloth and kerosene. Rub the stain gently, using small strokes. Rinse thoroughly. **NOTE:** This type of stain may become permanent if not cleaned immediately.

**Nail polish and lacquer-based stains** - Soak up as much as possible with dry cloth immediately. Any remaining stain may be removed with a nonflammable cleaning fluid such as “Tuff Stuff” or “Armorall” cleanser. Rinse thoroughly with clean water.

**Gum, grease and shoe polish** - Remove as much as possible immediately. Shoe polish if left for any length of time will permanently stain. Clean any remaining stain with “Tuff Stuff” or “Armorall” cleanser.

**Ink** - Remove stain immediately using a damp cloth and alcohol.

**SEAT CUSHION REMOVAL & INSTALLATION - DOT SEATS**

**WARNING:** If seat cushions are removed for maintenance, they must be reinstalled using the following instructions. Failure to comply with these instructions could result in injury from unattached seat cushions in the event of an accident.

**REMOVAL**

1. Loosen the two front swivel type clamps at the front underside of the cushion with a phillips-tip screwdriver. **Caution: Do not remove clamps.**
2. Rotate the swivel clamps so as to clear the front retaining channel frame.
3. Lift the forward edge of cushion 2 to 3 inches and pull cushion forward to remove.

**INSTALLATION**

1. Place the rear edge of cushion down on the base portion of the seat frame. Lifting the forward edge 2 to 3 inches, slide the cushion to the rear to engage the positive type clamp into the rear retaining channel.
2. Lower the forward edge to the frame, making sure the swivel clamps are inside the frame and the positive type clamps are secure on the rear retaining channel.
3. Rotate the swivel clamp to engage the forward retaining channel frame.
4. Tighten with phillips-tip screwdriver until clamps do not rotate.

**SEAT CUSHION REMOVAL & INSTALLATION - DOT SEAT BELT SEATS**

**REMOVAL**

1. Loosen the two front swivel-type clamps at the front underside of the cushion with a phillips-tip screwdriver. **Caution: Do not remove clamps.**
2. Rotate the swivel clamp located at the rear underside of seat cushion.
3. While lifting the rear edge of the cushion, pull the cushion to the rear and remove.

**INSTALLATION**

1. Place the forward edge of the cushion 2 inches to the rear of the front retaining channel. Slide the cushion forward, engaging the positive clamps onto the forward retaining channel.
2. Lower the rear edge to the frame and rotate the swivel clamps so they engage the square tube crossmember.
3. Tighten screws in front and rear clamps with phillips-tip screwdriver until clamps do not rotate.
TRACK MOUNTED PASSENGER SEATS

If your bus is equipped track mounted passenger seats and you relocate the seats or remove the seats to accommodate wheelchairs, you must follow rules of spacing and placement to comply with FMVSS 222 “School Bus Passenger Seating and Crash Protection” and FMVSS 217 "Bus Window Retention and Release". The decal (as shown) which gives these rules is installed on the interior body panel above the windshield.

All passenger seats must have a seat or barrier in front of it to provide compartmentalization required by Federal Motor Vehicle Safety Standards. As you reconfigure your bus, you may need additional barriers. Barriers are available from Blue Bird Body Company Part Sales.

---

FEDERAL STANDARD REQUIREMENTS FOR TRACK SEAT PLACEMENT
ALL PASSENGER SEATS MUST HAVE A SEAT OR BARRIER
THE SAME WIDTH AS THE SEAT IN FRONT OF IT

---

ELECTRICAL SYSTEMS

The following guidelines must be followed when doing any work on vehicle electrical components or wiring.

1. Before beginning any electrical work, disconnect all batteries. Always remove all battery ground straps first and replace last to prevent accidental arcing.
2. Use only proper gauge wiring with high temperature insulation, such as, chemically cross-linked polyethylene, which meets SAE J-1128 (150 Degree Celsius).
3. Be certain any added circuit is protected by the use of a fuse or circuit breaker.
4. Any push-on terminal must be insulated.
5. When installing or replacing any wiring (other than ground straps), observe the following:
   A. Always use clamps to secure wires away from any sharp metal edges or moving components.
   B. Support wires at least every 30 inches with insulated clamps.
   C. Where wiring is connected to moving component such as the engine, provide an adequate slack loop to allow for motion in all directions. Clamp at both sides of loop.
   D. Be certain there is sufficient length in wires so no wires are pulled in tension.
   E. Wires should be secured to remain four inches from exhaust pipes, manifolds or turbochargers unless components are shielded.
   F. Use rubber grommets whenever wires must pass through holes.
   G. Cover all full time hot or accessory and ignition hot wires with approved loom.
   H. Avoid routing wires in contact with fuel lines or plastic components.
6. Always be sure ground straps are replaced when any work is done on engine components. The alternator must have at least a six (6) gauge strap. The engine must have one strap, engine block and transmission. (Use bolt that mounts transmission to rear face of engine block.) Allow slack loop for engine motion. Use external star tooth washer between cable and frame.

7. Do not “splice” into existing wires, instead route wire full length to appropriate source.

8. If accessories must be added, relays may be required; check installation instructions thoroughly. Use bank of circuit breakers in the electrical panel unless the accessory must be on during cranking, in which case the “hot bar” should be used.

9. Always use insulated rubber boots over hot six (6) gauge wiring on alternator, ammeter shunt or junction blocks.

Quick Reference

Wiring Circuit Color Code Major Circuits

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Rear Directional Light</td>
<td>Yellow</td>
</tr>
<tr>
<td>Right Rear Directional Light</td>
<td>Dark Green</td>
</tr>
<tr>
<td>Stoplights</td>
<td>Red</td>
</tr>
<tr>
<td>Back-up Lights</td>
<td>Blue</td>
</tr>
<tr>
<td>Taillights</td>
<td>Brown</td>
</tr>
<tr>
<td>Ground</td>
<td>White</td>
</tr>
<tr>
<td>Ignition Feed, Primary Feed</td>
<td>Black</td>
</tr>
</tbody>
</table>

Refer to the master wiring diagram for wire colors for other circuits.

LIGHT BULB DATA

<table>
<thead>
<tr>
<th>Lamp Description</th>
<th>Trade Name</th>
<th>Trade No.</th>
<th>Color</th>
<th>Bulb No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERIOR LIGHTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dome</td>
<td>Weldon</td>
<td>8005</td>
<td>(Standard)</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Weldon</td>
<td>8010</td>
<td>(Deluxe)</td>
<td>93</td>
</tr>
<tr>
<td>Stepwell</td>
<td>Arrow</td>
<td>35</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>Emerg. Door Light</td>
<td>Weldon</td>
<td>8025</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>Switch Panel Pilots</td>
<td>Cole Hersee</td>
<td>PL19</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Dial</td>
<td>41204-1211</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Switch Panel Illum.</td>
<td></td>
<td>1314962</td>
<td></td>
<td>53</td>
</tr>
</tbody>
</table>
**EXTERIOR LIGHTS**

<table>
<thead>
<tr>
<th>Type</th>
<th>Brand</th>
<th>Model</th>
<th>Color</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directional</td>
<td>KD</td>
<td>772-9105</td>
<td>Red &amp; Amber</td>
<td>1156</td>
</tr>
<tr>
<td></td>
<td>Weldon</td>
<td>1010 Series</td>
<td>Plain &amp; w/ Arrow</td>
<td>1156</td>
</tr>
<tr>
<td></td>
<td>Signal Stat</td>
<td>1604</td>
<td></td>
<td>1156</td>
</tr>
<tr>
<td></td>
<td>Guide</td>
<td>3111-04</td>
<td>Amber</td>
<td>1156</td>
</tr>
<tr>
<td>Warning Light</td>
<td>Weldon</td>
<td>1020-Series</td>
<td>Red &amp; Amber</td>
<td>4636</td>
</tr>
<tr>
<td>Cluster &amp; Marker</td>
<td>Weldon</td>
<td>5050</td>
<td>Amber &amp; Red</td>
<td>904</td>
</tr>
<tr>
<td></td>
<td>Peterson</td>
<td>122</td>
<td>Amber &amp; Red</td>
<td>194</td>
</tr>
<tr>
<td>Side Directional</td>
<td>Peterson</td>
<td>122</td>
<td></td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>Arrow</td>
<td>059-990021CP</td>
<td></td>
<td>1073</td>
</tr>
<tr>
<td>Stop-Tail/Tag</td>
<td>Dominion</td>
<td>70-6128-71</td>
<td></td>
<td>1157</td>
</tr>
<tr>
<td></td>
<td>Signal Stat</td>
<td>2103</td>
<td></td>
<td>1157</td>
</tr>
<tr>
<td>Back-UP</td>
<td>KD</td>
<td>854-5301</td>
<td></td>
<td>1156</td>
</tr>
<tr>
<td></td>
<td>Weldon</td>
<td>7-1010-1</td>
<td></td>
<td>1156</td>
</tr>
<tr>
<td></td>
<td>Weldon</td>
<td>3-1060-1100</td>
<td></td>
<td>1156</td>
</tr>
<tr>
<td>Stop</td>
<td>Weldon</td>
<td>1010</td>
<td>Red</td>
<td>1156</td>
</tr>
<tr>
<td></td>
<td>Arrow</td>
<td>438</td>
<td></td>
<td>1157</td>
</tr>
<tr>
<td></td>
<td>Signal Stat</td>
<td>1605</td>
<td></td>
<td>1156</td>
</tr>
<tr>
<td></td>
<td>KD</td>
<td>772-9105</td>
<td></td>
<td>1156</td>
</tr>
<tr>
<td>Destination Sign</td>
<td></td>
<td></td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>School Bus Sign</td>
<td></td>
<td></td>
<td></td>
<td>TS93</td>
</tr>
</tbody>
</table>

**DORAN WARNING LIGHT MONITOR**

The Doran monitor is a current-monitoring device; therefore, if current is flowing through one of the bus lamp circuits, the monitor senses this and lights the corresponding monitor bulb. If the bus lamp burns out, current ceases and the corresponding monitor bulb goes out indicating a fault. (See schematic illustration Page 18 showing A Typical Monitor Circuit).

The Doran monitor is a reliable, long-life device, but as with most electrical instruments, it can be overheated and damaged if an overload occurs in a bus light. Such overloads can exist if a bus light circuit becomes shorted, forcing current through a coil in the monitor which exceeds its rated capacity. Short circuits can occur if improper connections are made during installations, during bus repairs, etc. If the monitor has an optional thermistor overload protection, the tail light circuits are overload protected (thermistors are located on the bottom of the component side of the P.C. Board).

This repair instruction is intended to assist qualified repair personnel to diagnose, remove, repair and reinstall monitors, which have become inoperative due to a variety of conditions.

**REPAIR PROCEDURE**

**NOTE:** Field repair is not intended for monitors covered by Blue Bird Body Company warranty. Inoperative monitors under warranty should be returned to Blue Bird Body Company for repair or replacement under the terms and conditions of warranty for electrical parts.

Step 1: **MOST IMPORTANT!** Carefully note and record exactly which monitor lamps are not operating properly. Include this information on a tag to be attached to the monitor after removal from the bus panel.

Step 2: Disconnect bus battery.
Step 3: Remove mounting screws, which attach the monitor to the bus panel, being careful not to accidentally pull any connecting wires loose.

Step 4: Remove one connecting wire at a time from monitor terminals, tagging EACH WIRE with the terminal number shown on the monitor.

Step 5: If a spare monitor is to be installed at this point, record the monitor serial number for your future reference. The number is shown on both the protective fiberboard back plate and on the monitor printed circuit board.

Step 6: With the monitor removed from the bus and to a repair bench, remove the four nuts to remove the monitor PC board from the face plate. Pull the protective fiberboard backing from the terminals, being careful not to bend or tear it; retain for later use.

Step 7: Locate the components to be replaced by referring to Diagram of Coils and Reed Switches on Page 16. Locate the solder points for these components.

Step 8: Replace the inoperative coil/reed switch assembly as follows:

a. With wire clippers cut the reed switch leads (2) and the coil leads (2) as close to the board surface, as possible. (If a tail lamp monitor is to be replaced, pull the protective shield loose and retain for reuse later).

b. With soldering iron, CAREFULLY melt-out the remaining coil and reed switch leads from the solder side of the board, pulling gently on the leads with tweezers. With the lead stubs removed, touch the holds in the PC board with soldering iron to "clear" them for replacement lead insertion.

c. Insert replacement coil and reed switch leads, guiding them into proper holes with index finger and thumb. Hold coil snug to the board while leads are bent over the solder side of the board. It is recommended that excess leads not be clipped until after soldering is completed. This will help to minimize shock or vibration on the reed switch, when leads are later trimmed. (Reed switches are encased in a fragile envelope and should be handled carefully to avoid chipping of envelope or distortion of leads).

d. Place a bead of solder on the remaining lead ends, being careful not to interfere with other nearby solder points or PC paths.

Step 9: If a tail lamp has been replaced, clean the original sealant from the protective shields and reinstall with new Silicone rubber sealant as recommended.

Step 10: Visually examine all other components, leads, PC paths and LED’s for any remaining problems to be corrected. Reinstall monitor in bus, making sure battery is disconnected and that wires are reconnected to the monitor in the same order as shown in chart on page 18.

If additional instructions are needed after following the above procedure, contact Blue Bird Body Company.

**DIAGNOSIS**

**Condition A**

If ALL lights on the monitor are inoperative, even though the exterior lights on the bus operate properly, and all connections are still intact, the causes may be:

1. Overloading or physical damage has burnt or broken a path on the printed circuit board. (It is not considered practical to attempt field repair of printed circuit board paths, and a replacement monitor is recommended).
Condition B:
If a particular light is inoperative, even though the corresponding exterior bus lamp operates properly, and all connections to the monitor are intact, the cause may be:
1. A burned-out coil or inoperative reed switch. Burned-out coils can usually be visually detected by a blackened appearance, when the monitor is removed from the bus. If a burned-out coil has not scorchèd the board and distorted a PC path, a replacement coil/reed switch kit can be installed. (Available through your usual Blue Bird service parts source).
2. A loose connection in one or both leads of the light emitting diode (LED) on the monitor. LED’s seldom fail unless they are installed with incorrect polarity or have suffered physical damage. The LED recessed design of face plate protects against normal usage. (LED’s CAN be ruined by Ohm meters, and care must be taken to avoid the use of such meters).

The cause of an inoperative LED will generally be found in monitor and bus circuits other than at the LED; however, if an LED itself is known to be inoperative, contact your usual Blue Bird service parts source for special handling of replacement LED’s.

Condition C:
If a monitor light stays on even when the exterior light of the bus is turned off, the reed switch located inside of the monitor coil is not operating properly. This can be repaired in the field by replacing the coil and reed switch (available in a preassembled unit from Blue Bird Body Company) - see Condition B, Item 1, above.

Condition D:
If the tail light monitor and exterior tail lights fail to operate, the cause may be:
1. Tail light bulbs may need to be replaced.
2. An over current situation. In this case, the thermistor has protected the entire circuit. Remove power from the circuit and monitor, repair over current and reconnect.

Some causes of over current:
A. Dead short,
B. Wrong tail light bulb, and
C. Parallel wiring of additional tail lights.

TOOLS AND SUPPLIES REQUIRED FOR REPAIR
- Hand tools as required to remove mounting screws at bus panel.
- Tags suitable for use in marking connecting wires, and also for recording the monitor problem.
- A 30 or 40 watt soldering iron for electronic repair (do not use a 100-watt “shop” iron).
- Small wire clippers.
- Pointed tweezers (Clauss #225, or equivalent).
- 60/40 resin core solder, .031 or .062 thick (Kester “44” or equivalent).
- Replacement coil/reed switch kits. (Note that coils for bus warning lights are 10-turn coils; those for tail lamps are 50-turn coils, and those for back-up lights, turn signals, and stop lights are all 16-turn coils. The proper coil MUST be used in replacement.)
DORAN EXTERIOR LIGHT MONITOR
(A Typical Circuit)

Diagram of Coils and Reed Switches with Indication of the L.E.D.'s they Control
CIRCUIT BREAKERS

Body and chassis circuits are protected by circuit breakers located in a side mounted electrical box below driver’s window. If a current overload or short should occur in any body circuit, it will trip the circuit breaker. If a short occurs and the circuit breaker breaks, the circuit breaker will reset itself when the element cools in about 15 seconds. A short may be indicated by blinking of lights or fluctuating gauges. The shorted circuit should be corrected immediately. Refer to body or chassis master wiring diagrams provided with vendor information.

For access to the electrical panel, locate release latch as shown. Push latch release downward. This will enable the access door located on the outside of bus below the driver’s window to open.

The breakers are divided into three sections: ignition, accessory and hot. The circuit breakers are listed below by category. For additional information, see Diagram, Wrg, Master Chassis AAFE #1831882 & #1831874 AARE supplied with vendor information per order.

The accessory circuit breakers may have the following accessories connected:
1. Back-up lights (wire color - Lt. Blue)
2. Backing horn
3. Body solenoid switch

The ignition circuit breaker:
1. Sanders (wire color - Black)
2. Air dryer (wire color - Orange)
3. Fuel transfer valve
4. Heated reservoir drain valve (wire color - Orange)
5. Racor fuel filter (wire color - Red with White stripes)
6. Engine warning (wire color - Tan 12 V to buzzer.)
7. Low air buzzers (wire color - Tan)
8. Two speed axle
9. Radio
10. PA system

The hot circuit breaker:
1. Headlight switch (wire color - Dark Green)
2. Stoplight (wire color - Dark Green)
3. Heated fuel filter (wire color - Red)
MIRRORS & MIRROR ADJUSTMENT

WARNING: The vehicle's mirror system has been designed to comply with all field of view requirements, but it is the owner's responsibility to adjust the mirrors properly before placing the vehicle in service and to maintain the adjustment during the service life of the vehicle. Mirrors provide additional driver visibility on buses. To be effectively used mirrors must be properly adjusted for each driver and the driver must be aware of the limitations on viewing area that exists even when mirrors are properly used. Mirrors are not a substitute for proper driver training and the exercise of driver care in operating the vehicle and loading and unloading of passengers. Do not move the bus until you have accounted for each passenger that has disembarked and have confirmed that the passenger is clear of the bus. Failure to follow these procedures could cause serious injury or death.

Right front convex crossview and right and left front convex rearview mirrors are required equipment on all All American Forward Engine and Rear Engine Type (D), buses. Left front convex crossview mirrors are also available.

INTERIOR MIRRORS

Inside rearview mirrors are adjustable by loosening the bolts and nuts in slotted holes. Adjust the mirror to afford the operator a good view of bus interior and roadway to the rear.

WARNING: Many school bus passengers are energetic children who are small and playful and do not understand the hazards of buses. After unloading, some children could be outside the field of vision of your mirrors or could quickly dart into such a place. Do not move your bus after unloading passengers until you have confirmed the location of every child who got off and have confirmed that each child is completely clear of the bus. Failure to follow this procedure could cause serious injury or death.

8” DIA. SUPPLEMENTAL EXTERIOR REARVIEW MIRROR

Some units may be equipped with two (2) 8” elliptical mirrors, one on the LH side and one on the RH side, which are designed to supplement the view provided by the outside rearview driving mirrors. The RH 8” elliptical mirror is attached to the RH outside rearview mirror mounting bracket as illustrated, and is viewed through the RH windshield. The LH 8” elliptical mirror is attached to the bus body and is located so as to be viewed through the LH windshield.

Proper adjustment is necessary for any mirror system to perform as designed. The following adjustment should be used to allow the driver to obtain the maximum viewing area with the mirror system.

Position the RH 8” elliptical mirror in the location illustrated. Adjust the 8” elliptical mirrors on both the RH and LH side to provide the seated driver a view of the ground directly below the outside rearview driving mirrors, and rearward to overlap the view provided by the outside rearview convex driving mirrors.

CAUTION: A convex mirror has a curved surface and is designed to provide a wide view with minimum distortion. However, persons or objects seen in a convex mirror will look smaller and appear farther away than when seen in a flat mirror or viewed directly. Therefore, use care when
judging the size or distance of a person or object seen in a convex mirror. Wait until you can view the person or object in a flat mirror or direct view to determine their size and distance.

**EXTERIOR REARVIEW**

Standard equipment on all school buses is comprised of 4 outside rearview driving mirrors. (2 per side), and 2 elliptical crossview mirrors, (1 per side). The outside rearview driving mirrors include (1) 6.5”x 10” flat mirror and (1) 6.5”x10” convex mirror each side. The outside rearview driving mirrors are designed to provide the seated driver a view of the roadway to the rear and to the sides of the bus. The elliptical crossview mirrors are designed to provide a seated driver a view of all areas around the front of the bus not directly visible to the driver. The elliptical crossview mirrors are designed to be used to view pedestrians while bus is stopped. **DO NOT USE THE ELLIPTICAL CROSSVIEW MIRRORS TO VIEW TRAFFIC WHILE BUS IS MOVING. AS IMAGES IN SUCH MIRRORS DO NOT ACCURATELY SHOW ANOTHER VEHICLE’S LOCATION.**

Proper adjustment is necessary for any mirror system to perform as designed. The following adjustment sequence should be used to allow the driver to obtain the maximum viewing area with the mirror system.

1. Adjust the driver’s seat to the desired position.
2. Adjust the RH flat driving mirror so that the tops of the side windows are visible in the upper edge of the mirror, and so that the RH side of the bus body is visible in the inside edge of the RH flat mirror.
3. Adjust the RH convex driving mirror so that the view in the top of the convex mirror overlaps the view provided by the RH flat driving mirror, and so that the RH side of the bus body is visible in the inside edge of the RH convex mirror.
4. Adjust the LH flat driving mirror and the LH convex driving mirror following the same procedures described for the RH mirrors. Refer to steps #2 and #3 above.
5. Adjust the elliptical crossview mirrors by positioning each mirror head so that the “arrow” embossed in the top of the elliptical mirror housing is pointed directly at the eyes of the seated driver.
6. A final adjustment should be made to the mirror system so that the seated driver can view the areas required by FMVSS 111, including the entire top surface of cylinders M and N when located as illustrated and rearward a minimum of 200 feet (measured from the mirror surface) using the outside rearview driving mirrors. The elliptical crossview mirrors should be adjusted to provide the seated driver a view of the entire surface of any cylinder A thru P (when located as illustrated) not visible by direct view of the driver. The view provided by the elliptical crossview mirrors must overlap the view provided by the outside rearview driving mirror system.
**Maintenance:** All mirrors should be cleaned weekly or more often if conditions warrant. Cleaning should be done with an ammonia solution to insure that mirrors are not obstructed. Be sure that mounting fasteners are kept tight so that mirrors will not vibrate. Check weekly and retighten, if necessary.

---

**EMERGENCY EQUIPMENT**

**FIRST AID KIT***

The first aid kit is mounted in the front of the bus body just above the right windshield. The contents of the kit should be inspected weekly or as required by local regulation to be sure that all contents comply with state specifications.

**FIRE EXTINGUISHER***

The fire extinguisher is normally located to the left of the driver’s seat, or on the righthand side of the hood ledge near the stepwell when space limitations dictate. Your unit may be equipped with either a 2 3/4, 4 1/2, 5 or 6 pound extinguisher. Inspect the pressure gauge every 30 days or as required by individual state fire laws to insure that the unit is fully charged. Inspect mounting fastener periodically to be sure they are tight.

**FIRE AXE/CROWBAR***

The fire axe and crowbar are located on the electrical panel access cover to the left of the driver’s seat as close to the front as possible every 30 days, inspect installation mounting fasteners to insure that they are tight. Check fire axe and crowbar monthly to be sure that they are easily accessible and unobstructed.

**FLARE KIT***

The flare kit is mounted on the left-hand side panel behind the driver’s seat. Insure that the contents of the flare kits are in place every 30 days or as required by local regulations. Inspect mounting fasteners for flare kit box every 30 days to insure that they are tight.

**TRIANGULAR WARNING DEVICE***

For states requiring the triangular warning devices to be located in the driver’s compartment, this container is mounted above the windshield at the upper center near the roof line. For other states, it is located on the left-hand rear floor board under the rear seat. Inspect contents of the kit every 30 days or as required by local code to insure proper operation.

In units with optional locking emergency equipment in the front upper panel above the windshield, all equipment is located behind the access door which is labeled with a list of the equipment. To meet state specifications, the door locking mechanism is connected to a buzzer system. The buzzer sounds when the ignition is turned on and the compartment is locked.

*On the Rear Engine models the first aid kit,
triangular warning device, encased fusees, fire extinguisher, fire axe and wrecking bar are located in the front of the bus body in the center compartment at the floor depending on the options.

Your unit may be equipped with a 2 3/4, 4 1/2, 5 or 6 pound fire extinguisher. Periodic inspections are needed.

**RECOMMENDED WARNING DEVICE POSITIONING**

![Diagram showing recommended warning device positioning for Two Lane Traffic and Four Lane Traffic.](image)
EMERGENCY EXITS

Emergency exits are clearly identified by the words “Emergency Exit.” Operating instructions are written close to each exit. Some units are equipped with an audible alarm device signifying an emergency exit is unlatched or open. If, when turning the ignition switch on, a buzzer sounds, check emergency exits to see that they are completely closed. All emergency exits meet Federal Motor Vehicle Safety Standard 217 “Bus Window Retention and Release.” These illustrations show various types of emergency exits.

All emergency exits should be inspected and operated daily to ensure they are labeled and operate properly per the instructions provided.

Also see Transpec Safety Vent.

TRANSPEC SAFETY VENT

MAINTENANCE CAUTIONS

Transpec Safety Vents are designed to provide years of reliable service with a minimum of maintenance. All components are rust proof with life time finishes, and moving parts are Teflon coated to eliminate need for lubrication. Use of lubricants, paints, or other coatings—such as graffiti deterring spray—is not recommended.

Suggested maintenance includes periodic inspection of attaching fasteners for evidence of loosening due to tampering, and regular cleaning with mild soap and water. Although there are other cleaning solutions available, some of them contain solvents and other chemicals that can attack the high strength materials used in the production of safety vents.
It is the customer’s responsibility to ensure that cleaning solutions are compatible with the materials used on safety vents.

Graffiti removing cleaners often contain acetone, ether, lacquer thinner, or other solvents known to destroy the high strength properties of many engineering plastics and use of these cleaners must be avoided. Graffiti resisting coatings often leave a sticky residue that interferes with smooth up/dowm movement of the ventilator mechanism. Some of these coatings also contain solvents that will reduce the strength of certain components. Use of these coatings on safety vents is at considerable risk and should be avoided.

**SERVICE AND REPAIRS**

All components used in the production of Safety Vents are available as service parts, except for one hinge that represents a possible hazard when improperly reattached to a hidden tapping plate that is often damaged, whenever the hinge is damaged. The tapping plate is permanently laminated between the inner and outer cover assemblies and can neither be inspected nor replaced. It is, therefore, necessary to replace the entire assembly following damage to the hinge.

**CAUTION:** Hinge assembly is critical and hinge should never be removed from cover assembly. Fasteners used in this assembly are special and have critical torque requirements and tamper resistant heads to discourage tampering.

**WHEELCHAIR LIFTS**

For the All American, Blue Bird supplies lifts from Braun and Collins. Each vendor provides its own publication for information on maintenance, lubrication, troubleshooting and other important items that are imperative to the smooth operation and safety of wheelchair lifts. These publications are supplied with vendor maintenance documents per order.

Illustrated is the wiring diagram of the buzzer circuits for the wheelchair lift door. The buzzer indicates whether the door is unlatched, opened part of the way, or opened completely (at which time buzzer does not sound).

**STOP ARMS**

Stop arms are required on Blue Bird All American school buses per FMVSS 131. Stop arm assemblies are purchased as a kit; many different kits are available with blades to meet all state requirements. The stop arm is located on the left-hand side of the body under the driver’s window. Stop arms are most commonly operated by a manual switch located in the switch panel.

For air stop arms the manual switch activates an electric solenoid valve controlling the flow of air. Optionally, the solenoid valve may be activated by the warning lamp system. This system works in conjunction with the air system on the chassis. No preventive maintenance procedures are required with these systems.
With the electric stop arms the manual switch activates the control relay of the stop arm. Optionally, the stop arm may be activated by the warning lamp system. The following preventive maintenance procedures should be followed for the electric stop arm.

**Monthly**
- Oil the dual-action breakaway hinge at four (4) pivot points with a high performance, penetrating lubricant. Tri-Flow™ (DuPont) with teflon is recommended.
- Check and make sure breakaway portion of hinge is free and movable.
- Check fasteners for tightness.

**Quarterly**
- Remove front and rear covers of base and check internal fasteners for tightness.

On units equipped with air stop arms, the air pressure may occasionally require adjustment to insure proper opening and closing of the stop arm. Air regulator is accessible by opening the electrical panel door outside under the driver's window. Regulator is identified as shown. To regulate the air pressure, remove the wire retaining clip below the regulator knob and pull the red lock ring out. Turn the knob counterclockwise to decrease the pressure, then slowly increase the pressure (turn knob clockwise) until the stop arm hinge is extended to approximately 90 Degrees. Relock knob by pushing in the red lock ring and reinstalling wire retaining clip.

The “STOP” sign must extend and if equipped with lights, the lights must be operating at anytime the red lights of the warning light system are flashing. There are some unique, state-designed warning light/stop arm systems that permit the stop arm to be withdrawn while warning lights are in operation. For those situations an audible alarm sounds to alert the driver of the condition.

**AIR STOP SIGNS AND CROSSING ARM TROUBLESHOOTING**

**AIR STOP SIGNS AND CROSSING ARMS**

**Problem:**
Signs won’t open to 90 Degrees.

**Areas to Check:**
1. Faulty diaphragm - same as above.
2. Faulty solenoid valve - same as above.
3. Air pressure regulator - air pressure regulator must precede the solenoid to prevent damage to the solenoid or to the diaphragm. Excessive pressure may cause damage to both the solenoid and the diaphragm. Pressure should not exceed 12 lbs.
4. System leak - check to make sure that the air pressure supplied to the solenoid valve or the diaphragm is equal to 10 to 12 lbs. Again - CAUTION - not to exceed 12 lbs. of pressure is very important. Excessive pressure will cause damage to the diaphragm and the solenoid valve.
5. Loose fasteners - same as above.

**NOTE:** Solenoid valves must be checked under pressure while activation of the electric solenoid is taking place.
**ELECTRIC STOP SIGNS AND CROSSING ARMS:**

In order to troubleshoot an electric stop sign or crossing arm it is important to first understand how to install the stop signs and crossing arms. The electric installation can be accomplished in two different manners.

**Example #1:**
A. Dark blue to a switched 12V terminal. Red to a constant 12V terminal. Green to a proper ground. This example would use the blue wire to activate the stop sign and to deactivate the stop sign.

**Example #2:**
B. Dark blue and red to a constant 12V terminal. Green to a grounded switched terminal. Example #2 would use the green wire or the ground to activate and deactivate the stop signs or crossing arms.

One of the major features of the electric stop signs and crossing arms is that all of the works are in the base. You can troubleshoot the electric stop sign by first:

(A) Determining if the proper wiring installation has been achieved and that 12V and ground are available where required.
(B) Remove the rear cover of the base.
(C) Remove the red wire from the relay (wires lead to terminal on motor).
(D) Remove red wire from the limit switch.
(E) Replace the red wire on the limit switch with the red wire from the motor.
(F) With a battery charger or any other 12V source ground the motor terminal (black wire) and attach the positive 12V to the red wire terminal on the motor. The motor should begin to activate and run continuously until you remove the red wire.
(G) With a probe attached to the 12V positive side of the battery charger identify the black and light blue leads on the limit switch at the motor base and with a 12V positive prove select either the black or the light blue terminal and attach the probe to the lead of the limit switch. One of two conditions will occur - either the motor will begin running or it will not. If the motor runs it should proceed until the CAM circles and deactivates the limit switch causing the motor to stop. At that time switch terminals with the limit switch to either the black or light blue depending on where you started and again the motor should begin to run until the CAM positions itself to deactivate the limit switch. If both these points prove to operate the motor then the limit switch, CAM and motor assembly are functioning. If you have verified that you have the proper wiring installation as identified in the opening paragraph then your problem rests with the relay. Replace the relay. This should render the sign operational again.

**STOP SIGN BLADE FAILURE**

**Problem:**
Lights do not function.

**Areas to Check:**
1. Check to insure that the light bulb is working.
2. Check to insure that the ground strap is secure.
3. Check to see if 12V is being supplied to the light bulb.

It is important to note that there have been improvements made to the socket and pigtail. The improvements are as follows:
A. Screws versus rivets make replacement possible with a common nut driver.
B. A two-wire socket and pigtail eliminated the braided wire ground strap which on occasion failed in the field. This will help insure that the ground is intact throughout the operation and life of the sign.
C. Lower temperature protection (minus 40-wire and vinyl tubing) have been added to insure a broader temperature range in northern and southern climates.
Problem:
Fading to the blade surface.

Areas to Check:
1. Steel blades are painted with a red paint, which are prone to bleaching due to the pigments. If the blade becomes faded possible solutions are to repaint or replace the blade. Specialty recommends the replacement of the blade due to the labor savings and cost efficiency. Approximate cost of replacement blades on a steel blade is $8-10 depending on the quality.
2. Aluminum reflective signs have improved in technology to the point where blades in southern exposures are now lasting five to seven years. This is due to ink improvements where the pigmentation in the inks actually darkens over the life of the sign. Replacement now is due to sub-straight failures on Engineering grade versus ink failures as in the past. Decals are available for Engineering grade and high intensity sign runs you approximately twice as much as a steel blade. All or our products; air, vacuum and electric are available with a high intensity face.

FRONT ACCESS PANELS

To service components behind or underneath the dash area, access can be gained through the front access panels by the following procedure.

1. Release press button latches on center panel (Fig 1) and allow panel to open downward (Fig 2).
2. Pull two access door release handles (one each side Fig 3) toward the center to open access panels (Figs 4 a & b).

Note: Release handles on the rear engine model are located in the upper corners of the front center emergency equipment compartment.

Access can now be gained to the radiator tank cap, heater bleeder valve, heater coil and blower, wiring, windshield wiper motors, fresh air intake vents, driver’s toeboard area, etc.
ACCESS DOORS

In order to prolong the life of access door latches, locks and hinges, periodic maintenance should be performed as follows. Once per week, clean and inspect the door hinges and latch mechanisms. Clean with a nonabrasive degreaser or cleanser as required. Every three months lubricate with either a graphite-type lubricant or a spray-type lubricant such as LPS. The following is a list of access doors, which require these maintenance procedures.

1. Battery Compartment Door
2. Luggage Compartment Door
3. Tire Compartment Door
4. Gas Fill Door
5. Radiator Fill Door
6. Side Electrical Panel Door
7. Left and Right Hand Front Access Doors

Glove compartment and emergency equipment doors should be inspected on a daily basis. Open and close to insure proper operation. If necessary, follow the same lubrication procedure as outlined above.

BODY TIE-DOWN

Tighten the tie-down clamp bolts and body shear bolts at 1000 -2000 miles and quarterly thereafter to 37-41 ft. lbs. of torque.

The body mounting bolts are located on the outriggers under the body. The body is mounted with pads of high-durometer rubber between the floor and chassis frame rails. The rubber absorbs shock, deadens sound and maintains tension on the tie down clamps. Be sure the pads are in place when tightening tie down bolts.

WARNING: Failure to follow the procedures for tightening bolts, either by failure to tighten on schedule or by failure to conform to the torque poundages, could create a danger of separation of the body and chassis, thereby causing possible personal injury or death.
TOWING OR PUSHING

CAUTION: Never tow or push a vehicle equipped with Allison automatic transmission, until the rear drive shaft has been removed, or unless the rear wheels have been raised off the ground. Do not tow by front axle or crossmember. Damage to wiring and/or air lines can result where they are mounted on the front crossmember. Optional tow hooks are located at the front and/or rear of the vehicle under the bumper. Tow hooks are designed to tow or pull with both hooks simultaneously. Do not pull or tow with an individual hook. Bumpers provided on Blue Bird buses are designed to protect the vehicle and occupants from front and rear collisions. They are not designed for towing the vehicle. Blue Bird does NOT recommend nor approve towing the vehicle by the bumpers.

WARNING: Do not work under bus when supported by bumper jacks. Use only appropriate jack stands supporting frame rails when under the bus. Do not leave the bus unattended until appropriate measures have been taken to prevent vehicle movement.

DOORS

CONTINUING MAINTENANCE REQUIREMENTS
1. Keep working parts of control tightened.
2. Lubricate all working parts periodically, including hinges and overhead controls. (See Body Component Maintenance Chart)
3. Repair or replace worn seals.
4. Maintain proper door opening and closing adjustment. (See Body Component Maintenance Chart)

OUTWARD OPENING

Doors are mounted in a prefabricated framework which eliminates effect of body construction variations on door and seal operation. Doors are suspended completely on scaled ball bearings located at the top corners of the framework, inside the body. The interlink connection between the doors is a single assembly with oppositely threaded spherical bearing rod-end connectors on each end providing simple link length adjustment without disassembly. Simply loosen the lock nut, turn the tube, and retighten the nut when satisfactorily adjusted. The geometry of the mechanical link between the doors causes the rear door to close well ahead of the front door, so that the front nosing seal rubber always overlaps the rear. Oil impregnated bronze bearings serve as pivots, not supports, in the lower corners of the framework. All controls and mechanisms and the complete lower step tread are sealed inside the bus and out of the weather when the door is closed.

In the interest of safety through maximized driver visibility, the doors have been designed to have as much clear glass opening as possible. A four inch wide pad is mounted to the header cover over the opening.

The manual control is the Blue Bird cover over center locking type with built-in saf-latch. The door ease-of-operation facilitates use of a short handle arm, so the handle is six inches closer to the driver in the open position than with the jack-knife door.

The electric operator is also the linear motion type with a ball-screw drive. It is connected to a lever off the front door. Mechanically operated switches control automatic stop positions as well as stepwell and warning lights.

OUTWARD OPENING (AIR DOOR)

The air operator is a simple linear cylinder connected to a lever on each door and located inside the header cover. An interconnecting link between the doors controls their operation sequence. A safety release
valve is located over the door and stepwell lights are operated by air pressure switches inside the header cover. Door operation by the driver is managed by a simple two-way manually operated valve, and air pressure holds the door either open or closed depending on the position of the valve. The operation speed is adjustable by use of flow control valves at cylinder inlet and outlet.

**JACKKNIFE DOOR - (If so equipped)**

1. Loosen the roller bracket at the top of the rear door.
2. Adjust the length of rod (between the door control and the door) and the location of the rod end bracket on the door for proper open and closed position.
   a. Lengthen the rod if the door opens too far and does not close against the top seal.
   b. Shorten the rod if the door closes too hard and does not open far enough.
   c. Move the rod end bracket forward if the door does not close against the seal and does not open far enough.
   d. Move the rod end bracket rearward if the door opens and closes too far.
3. Attach the roller bracket to the rear door and adjust.
   a. If the rear door hangs in the track when starting to close the door, move the bracket to the rear.
   b. If the rear door does not open to the front enough, move the roller forward.
4. Perform the following adjustments and maintenance for ease of operation. The top of door should be approximately 3/8 inch below door header.
   a. Move door upwards so that rubber door sweeps do not drag on stepwell treads. Adjust door height by loosening bolts and nuts that attach front door panel to front hinge. Holes in hinge are slotted. This permits vertical adjustment of door.
   b. Assure that top edge of door nosing rubber does not drag on door stop header rubber. Remove the first three upper screws in the inner and outer nosing rubber retainer strips and force the nosing rubber downwards. Replace screws after the rubber nosing has been adjusted.
   c. The rear upper corner of the rear door panel should not drag on rubber door stop on the header. To provide the required clearance, move the door roller bracket towards the rear of the bus. This effectively will move the door panel away from the door stop rubber.
   d. Clean stepwell rubber treads and lower door rubber sweeps regularly. Cleaning these surfaces will reduce friction as the door is operated.
5. Assure that the door control rod end bracket is mounted squarely on door. If bracket is not square to the door, the yoke end pivot pin will bind. Adjust by loosening screws and tighten after bracket has been squared up.
6. Inspect the pivot nut on rod end bracket for burrs or other surface irregularities. Grind or file pivot nut so that its upper and lower surface is smooth.
7. Lubricate door hinge pin with a spray type lubricant (LPS No. 1). Lubricant should penetrate behind each hinge lug. Door hinge will operate quietly if properly lubricated.
**POWER JACKKNIFE DOOR**

NOTE: For air diagram, see drawing #0867606 supplied with vendor maintenance documents.

The following adjustments and lubrications should be performed on the power jackknife door (Options 0233, 0467 and 0468) to insure its proper operation.

1. Lubricate center hinge with LPS No. 1 type lubricant.
2. Adjust cylinder yoke so that when cylinder rod is fully extended in the open position, the door is not forced beyond its normal stopping point at the front stepwell band. Adjust cylinder mounting bracket adjustable yoke if required. **NOTE:** Improperly adjusted cylinder yoke can cause premature failure of door components.

3. Adjust switch striker plate on cylinder rod so that it does not bind against the switch and switch bracket in the closed position.
4. Insure that the roller bracket is installed square on the rear door panel.
5. Insure that the center hinge barrel is not binding against the outer skin of the rear door panel.
6. Adjust opening and closing speed of the door at valves located on cylinder to insure smooth action. Air pressure should be at normal operating range (100-125 psi).
7. Upper pivot bracket retaining screw at lever assembly should be tightened to at least 20 ft. lbs.

Maintenance procedures for entrance doors are to be performed at intervals of 1 month or 1000 miles, whichever occurs first.

**POWER DOORS**

Power doors have an air cylinder in the door header area for operation of jackknife entrance and exit doors. The door operates with an air push-pull valve located in the switch panel area. An emergency release valve is located above the door in the header cover. To use the emergency release, push the lever in the direction of the arrow. This valve exhausts all pressure on the door cylinder, allowing the door to be opened and closed manually using the inside door handle.
ELECTRIC OUTWARD OPENING DOOR

The electrically operated outward opening door has a linear actuator that moves a lever attached to the front door. To open the door, hold the spring loaded switch in the driver’s area in the “open” position until the door stops moving. An automatic switch stops the action of the door. To close the door move the switch to the “close” position and the door will stop automatically when fully closed. There is a keyed switch on the outside of the body on the cowl panel by the door that parallels the operation of the interior switch.

Emergency Release

With the door in the fully closed position, pull the release lever in the header panel rearward as far as possible. You will feel the linkage release and then feel the lever snap into a "park" position so it will not return forward when released. Push the door open to exit the bus. To reengage the release mechanism, move the lever in the header back to it’s forward position, and hold the driver operated spring loaded switch in the “open” position until engagement is obvious or until door is in fully open position.

SECURITY LOCK (Outward Opening Door)

A key operated "bolt" slides into a hole in the header when the door is in the closed position and locked. This option also requires use of the hinged stop on the door control. If the lock becomes difficult to operate, remove access plate on the inner door panel and channel and lubricate with No. 2 lithium grease. (Access plate shown removed in illustration.)
VANDAL LOCKS

ENTRANCE DOOR

To activate the optional electric entrance door vandal lock, pull the door to a full closed position from the outside of the vehicle. When this is done, the vandal lock is activated. To deactivate the lock insert key in lock located at right of the door (forward of door) and turn. Press against center section of door and it will open.

The manual vandal lock release handle is located in the lower kick panel of the entrance door. It rotates in a counterclockwise direction to latch. It can be locked in a latched position or in a 180 deg. unlatched position. The latch engages a bracket on the inside of the door. Before using the vandal lock, the hinged stop on the door control cover must be flipped down to keep the door control from traveling over center when closing the door.

The Outward-Opening door has an optional key locking mechanism exposed to the exterior of the bus. The mechanism engages a case hardened bolt for increased security. (See SECURITY LOCK)

Lubricate vandal lock every 6 months or 6000 miles, whichever occurs first. Use LPS-1 or “Apply” type lubricant and spray into the bushing and shaft in the center at the base of the lock handle. Also spray lubricant into key lock mechanism. Rotate the lock handle to insure smooth operation.

SLIDING BOLT VANDAL LOCK

The sliding bolt vandal lock, for the rear center emergency door, is an interior latch that prevents the door from being opened from the outside when engaged. The bolt is connected to an interlock assembly which prevents engine starting when the door is locked. If the lock is activated after the engine is running, an audible alarm is sounded in the driver’s area.

Lubricate sliding bolt mechanism every 6 months or 6000 miles, whichever occurs first with LPS-1 spray lubricant.
EMERGENCY DOOR

The emergency door vandal lock has a lock cylinder which is placed in the lock to make the emergency door inoperable. When the cylinder is in place in the lock, the coach cannot be started. To complete the ignition circuit, the lock cylinder must be removed from the lock and placed in the receptacle at the side of the door. When this is done, the circuit is completed and the coach can then be started.

No lubrication is required with this system.

KEEPING YOUR VEHICLE LOOKING NEW

WASHING YOUR VEHICLE

The best way to preserve your vehicle’s finish is to keep it clean by frequent washings. Wash the vehicle in lukewarm or cold water. Do not use hot water or wash in the direct rays of the sun. Do not use strong soap or chemical detergents. All cleaning agents should be promptly flushed from the surface and not allowed to dry on the finish.

POLISHING AND WAXING YOUR VEHICLE

Polishing with nonabrasive wax is recommended to remove accumulated residue and eliminate any “weathered” appearance.

FOREIGN MATERIAL DEPOSITS

Calcium chloride and other salts, ice-melting agents, road oil and tar, tree sap, bird droppings, chemicals from industrial chimneys and other foreign matter may damage vehicle finishes if allowed to remain on painted surfaces. Prompt washing may not completely remove all of these deposits. Additional cleaners may be needed. When using chemical cleaners developed for this purpose, be certain they are safe for use on painted surfaces.
FINISH DAMAGE
   Any stone chips, fractures or deep scratches in the finish should be repaired promptly. Exposed metal will corrode quickly and may develop into a major repair expense.

FLOORS AND FLOORCOVERING
   It is imperative that the interior of the bus be kept clean and floorcovering is an important part of this maintenance. Regular cleaning and care will prolong the life of floorcovering and improve the general appearance.

   Floorcoverings should be swept daily and mopped weekly with a mild detergent and water. Do not use floor sweeping compounds. Be sure that dirt, pencils, paper etc. that may cause the emergency door to improperly seal are removed. Do not use harsh detergents and excessive amounts of water. Do not use a water hose to wash out the bus, deterioration and damage to the wood floor could occur.

WARNING: Petroleum products, such as oil and grease, quickly deteriorate the floorcovering. These type products should be removed, as soon as possible.

   Continuous care must be exercised in the step well area where foreign objects can create a safety hazard. Soil and debris cannot be permitted to build up as this not only creates a hazard for passengers but hinders door operation and door sweeps. Insure that screws for floor trims and aisle trims are seated tightly, so as not to loosen and create a safety hazard.

ENGINE ACCESS

1. Press release button in center of latch on AAFE hood (as shown). This will release the latch and enable you to grip and lift, opening the hood.
2. Once the hood is open, locate the hood prop on the right hand inner wall of the engine compartment.
3. With the hood open, lift the prop and place it in the bracket located on the inner left hood surface (as shown).
4. The dipstick, oil fill and power steering fill are located on the left hand side of the engine. The transmission dipstick and fill is located on the right.

1. To open the AARE engine compartment door, press the release button on the latches located at the far right and left edges of the door.
2. Press the upper portion of the disappearing handle located in the lower center of the door for handle access.
3. When handle is reversed, grip and pull to open door.
4. After closing press in the larger portion of the latch untill it snaps to lock into position.

1. Engine Compartment Lights.
2. Engine Start Button.
3. Front-Off-Rear Selector.
4. Radiator Fill Cap.
5. Oil Fill.
6. Transmission Dipstick.
7. Oil Dipstick.
8. Heater Gate Valve. Not indicated on Cummins 8.3.

REAR SIDE ENGINE COMPARTMENT DOORS
To open press release button latches on top and bottom of rear side access doors. Opening LH door gives access to the outside of the radiator. Opening RH door gives access to the RH side of the engine. After closing press in the larger portion of the latch until it snaps to lock into position.

HOOD REMOVAL FOR MECHANIC'S ACCESS (AAFE)
1. Release latches on bottom left and right-hand sides of hood located towards the front.
2. Open hood and release two latches on the inner, rear end of hood. These four latches will enable the hood to be lifted off entirely.
HEATERS

GENERAL INFORMATION
Blue Bird heaters are hot water type which depend on heat generated by the engine for their function. Heat from the engine is picked up by the engine coolant which is pumped through the heaters inside the body and back into the engine. A typical heater inside the body is made of a heat exchanger coil and fans which move air across the coil. Air moving across the coil picks up heat from the engine coolant and transfers it into the body.

Satisfactory performance of the body heaters is basically dependent upon:
1. Adequate engine (coolant) temperature - this can be altered by thermostat rating (which should never be higher than recommended by the engine manufacturer) and/or shutters.
2. Adequate coolant flow - this varies with engine speed and can be increased if necessary by the use of an auxiliary water pump. The heaters are rated at six gallons per minute.
3. Proper fan operation - all motors have multiple speeds, and can most easily be checked for function by operating the motor switches individually and listening for the speed variations.

Many other factors affect performance, but the three mentioned are most basic.

HEATER OPERATION
Be sure the engine radiator is full and all coolant flow valves are open. See charts on valve location. Do not leave the engine running while opening or closing valves. Warm up the engine to operating temperature with the engine at up to 1800 RPM, if possible, and turn on the heater fans and the auxiliary water pump if so equipped.

Under extremely cold weather conditions, turning on the heater fans will cause the engine temperature to drop noticeably as heat from the engine is being transferred into the body. But as air temperature inside the body rises, engine temperature also rises. More heat will also be generated by the engine when it is caused to work in moving the vehicle. This is especially noticeable with diesels which do not warm up at idle as readily as gasoline engines. The fan speeds and subsequent air volumes can be controlled at the discretion of the driver for defrosting and ultimate passenger comfort.

HEATER SWITCH & OUTLET LOCATIONS
1. Defroster Outlet
2. Auxiliary Defroster
3. Heater
4. Driver’s Heater
5. Switches
   (All heater and defroster switches located on bottom row.)

Control air through outlets indicated by 1, 2 & 3 respectively.

HEATER ACCESS
The front heater can be accessed from two different places. From the outside, RH side of the front of the bus, and from the inside of the bus on the dash near the stepwell. NOTE: To gain access from the front, see: FRONT ACCESS.

To gain access form the interior of bus, remove the interior panel by removing the valve handle located on the lower left hand side. Remove the four screws in the heater access panel and lift it off.

To gain access to the rear heater, the following procedure should be used.
1. Remove hose cover.
2. Remove heater-to-wall panels.
3. Remove tie-down screws.
4. Remove heater from seat frame, pull it away from the wall and remove hose connections.
5. Disconnect motor wires and remove heater from bus for further disassembly.

DEFROSTING

Windshield fogging and frosting is caused by warm, humid air coming in contact with a cold windshield, which causes the moisture in the air to condense and possibly freeze if the windshield is cold enough. The warmer the windshield, the less moisture will condense on it. During initial warm-up, the defroster blowers should be operated at low speed to preheat the inside of the windshield glass. If the defroster is not turned on until the condensation starts, it is more difficult to heat the glass and overcome condensation. As passengers are loaded onto the bus, the moisture content of the air inside the bus increases. This moisture content tends to be lowered by opening the heater fresh air inlet. The most difficult defrosting conditions will be encountered when there is a large passenger load which must remain on the bus for extended periods of time, such as on a charter or over-the-road activity trip. Each passenger continually adds to the moisture content of the air, and after a period of time, the humidity can become quite high.

This condition can be improved by slightly opening the forward driver’s window, allowing the moist air to escape into the low pressure area outside the bus at that location. If the bus is equipped with adjustable static air vents in the roof, they should be kept open and exhaust fans, if so equipped, should be used.

Auxiliary fans mounted on the dash or overhead may be helpful in windshield defrosting when used to force warm air from inside the body against the glass to warm it and evaporate moisture. They should not be directed to oppose the flow of air from defrost outlets but to assist that flow if possible. Many different variations of auxiliary fan direction have been found to be effective under different conditions and their use on your unit can probably best be determined by trial.

DIFFUSER ADJUSTMENT

Air distribution from defroster and heater outlets can be adjusted by rotating the diffusers as shown below. Note that outlets having the wedge-shaped base can be adjusted vertically as well as horizontally by separately rotating the base.

CARE AND CLEANING OF DEFROSTER FANS

Defroster fan motor bearings are lifetime lubricated and do not require maintenance. Occasional cleaning of the blade and guard with a soft bristle brush and a vacuum cleaner or compressed air will help to maintain efficiency. As with any other fan, if the blade is damaged or imbalanced, vibrational damage can occur to the motor or surrounding components, so the blade should be replaced immediately.

WARNING: Do not operate a defroster fan without the fan guard properly installed.

Procedure:
1. Remove front half of fan guard by gently separating plastic tabs with a screwdriver or other hard instrument. Be careful not to damage tabs, as these connect the front half of the fan guard to the rear half. Removing the guard will provide access to the fan should it need to be replaced.
2. To remove the fan blade, use a 3/32” Allen wrench in the set screw located directly behind the fan. This should loosen the fan blade for removal.
3. The rear half of the fan guard can also be removed if necessary. After removing the fan, remove the two nuts and washers on either side of the center point and lift guard off.
**HEATER DEFROSTER LOCATION**

The blower in the front main heater contributes to keeping the driver’s area glass clear of fog and frost. See OUTLET LOCATION diagram. Defrosting performance is enhanced greatly by the use of fresh air into the heater. Open front access panel and observe fresh air intake on driver’s side of bus to verify the proper functioning of the fresh air intake.

Satisfactory performance of the body heaters is basically dependent upon:

1. Adequate engine (coolant) temperature - this can be altered by thermostat rating, which should never be higher than recommended by the engine manufacturer and/or shutters.
2. Adequate coolant flow - this varies with engine speed and can be increased if necessary by the use of an auxiliary water pump. The heaters are rated at six gallons per minute.
3. Proper fan operation - the three speed motor can most easily be checked for function by operating the motor switch and listening for the speed variations.

Many other factors affect performance, but the three mentioned are most basic.

Defrosting performance is enhanced greatly by the use of fresh air into the heater. Open the right front access door to determine proper functions of the fresh air intake.

**DEFROSTER FAN LOCATIONS**

Opt. 0525 - On the All American with deluxe door control and standard manual control, the fan is mounted on the door control bracket. With power door controls, the fan is mounted on the dash cover.
Opt. 0530 - One fan is installed per conditions outlined in Option 0525 for the lefthand fan. The other fan is mounted on the dash cover.
Opt. 0532 - Fan is located on the upper inner panel in the center.
Opt. 0535 - Fan is located on the upper inner panel 6” to the left of center.
Opt. 0541 - Defroster fan is located on the dash cover.

**HEATER BLEEDING INSTRUCTIONS**

Use of antifreeze (ethylene glycol type only) is recommended for summer or winter operation because of its corrosion inhibition and lubrication properties. A 50-50 solution of antifreeze and water is preferred and it gives freeze protection to about 30 degrees F below zero. Ultimate protection is attained at 68% antifreeze (about 92 degrees F below zero); a higher concentration of antifreeze should never be used. Check engine operations and maintenance manuals on recommendations on use of coolant additives.

If it becomes necessary to completely refill the chassis coolant system, the following procedure must be followed to insure adequate heater bleeding. During the bleeding process, it will be necessary to remove the radiator cap and refill cooling system several times to insure adequate coolant is available to replace purged air and coolant lost when bleeding.

**WARNING:** Extreme care must be used when removing radiator cap. As coolant becomes hot, pressure is built up in the cooling system. Rapid venting and/or removal of radiator cap will cause coolant to boil up and spray out and can result in serious burns. Slowly vent off pressure before removing radiator cap.

**PROCEDURE:**

1. With the engine off, shut all engine heater gate valves or clamp closed all heater hoses as close to engine as possible.
2. Fill cooling system completely, including surge tank with coolant and run engine for a few minutes to bleed air from cylinder block and heads.
3. Open the heater hose supply line gate valve or unclamp supply line hose. Refer to following pages, (Heater Cutoff Valves) for heater cutoff valve location. Turn on heater water pump.
4. Using a suitable container to catch coolant, run engine between 2,000 and 3,000 RPM, loosen bleeder valve located in heater hose return line. Bleed air and coolant through bleeder valve until air is eliminated from heater system. (Stop bleeding when continuous stream of coolant comes from bleeder valve.) **Note:** It will be necessary every few moments to refill the radiator or surge tank.

5. When all of the air has been purged from the heater system, open gate valve in heater hose return line or unclamp return hose.

6. Run engine between 2,000 and 3,000 RPM until thermostats open. To assist in deaerating the entire cooling system, accelerate the engine a few times before and after thermostats open. **Note:** Thermostats have opened when upper radiator tank and radiator hose becomes hot.

7. Refill cooling system including radiator and surge tank.

**WARNING:** Never idle engine in closed areas. Never sit in a parked or stopped vehicle for any extended amount of time with the engine running; exhaust gases, particularly carbon monoxide, may build up. These gases are harmful and potentially lethal. Carbon monoxide is colorless and odorless, but can be present with all other exhaust fumes. Therefore, if you ever smell exhaust fumes of any kind inside your vehicle, have it inspected immediately by your dealer and have the condition corrected. Do not drive with exhaust fumes present.

**REMOVAL OF UNDERSEAT FAN AND MOTOR ASSEMBLY**

1. Remove screws securing outlet to heater, front and rear.
2. Lower outlet panel and move it toward aisle to clear end of heater.
3. Rotate outlet panel toward rear, away from heater, exposing fan and motor assemblies. Remove screws securing fan and motor to heater for service.
Valves No. 2 & 3 are to be used to isolate the heater system from the engine in case a leak occurs within the system while bus operation must be continued, or for repair to a system.

**CAUTION:** The unit should never be operated with valve 3 closed and others open due to possible excessive pressure build-up.

**ENGINE:** Cat 3116

Valve No. Location
1. On heater
2. Behind alternator
3. Behind remote transmission cooler (into steel “U” tube on manual transmission)

**ENGINE:** Cummins 8.3T

Valve No. Location
1. On heater
2. Below turbocharger
3. Behind remote transmission cooler (into steel “U” tube) 8.3T
PREVENTIVE MAINTENANCE - to be performed annually

Hoses
Check all water hoses for kinks that can prevent water flow or chafing that can cause failure. Look and feel for hardening of rubber or cracks that result from aging. Hoses should be replaced when external cover tube cracks first appear. Hoses exposed under floor and in the engine area will deteriorate faster than those inside the body due to their exposure to the elements. Therefore, these hoses need to be checked more frequently.

Coils
The heater will be most efficient when the coil and fins and air flow passages are kept clean and free from dust and dirt. The coil should be cleaned carefully with compressed dry air or vacuum, and a soft bristle brush. Damaged fins should be straightened with a fin comb to prevent air flow restrictions. The heater coil can be accessed through the right front inside access panel, or, for underseat heaters, removal of passenger seat cushions.

Motors, Switches, Blowers and Fans
Motors are essentially maintenance free and do not require lubrication or cleaning, but excessive vibration caused by damaged blower wheels or fans can cause motor damage. Check wheels and fans for obstructions or damage by running each fan alone, then listening and feeling for irregularity. Replace damaged wheels or fans to prevent vibratory damage to surrounding and supportive housing parts and fasteners as well as motors.

Switches are also maintenance free, but loose wiring connections to switches or motors can cause excessive resistance and overheating damage. Wires to switches can be checked or repaired by removal of the switch mounting panel next to the driver.

Panels and Housings
Fasteners which connect and retain structural and access panels should be checked and tightened as necessary. A loose screw can allow panel vibration, resulting in excessive noise, additional fastener failure, or metal fatigue cracks.

HOSE REPAIR
Hoses are installed with as few joints as possible so as to prevent the possibility of leaking joints. If a portion of hose becomes damaged, a new piece of hose can be spliced in by use of 4 inch brass tube (Blue Bird part #1701903), and hose clamps. If hose must be replaced due to aging, the entire length of hose should be replaced. Air duct hose can be repaired with a good brand of wide PVC tape or duct tape.

HEATER HOSE CLAMP SERVICE
Tighten heater hose clamps after first 1,000 miles and annually thereafter. Heater hose clamps are located at the underseat heater coil, behind the access door in the heater hose covering immediately forward of the left front wheelhousing, and under the floor near the right front and driver’s heater. The part number for this clamp is 1056050. Torque clamps to 45 inch lbs. new and 34 inch lbs. for retorque.
## HEATER & HEATER CONNECTIONS WATER CAPACITY CHART

**NOTE:** Water capacity of heaters includes tubing within heater enclosure.

<table>
<thead>
<tr>
<th>Option No.</th>
<th>Description</th>
<th>Capacity (Quarts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std</td>
<td>90 FC Front Heater</td>
<td>3.45</td>
</tr>
<tr>
<td>1230</td>
<td>12 Driver's Heater</td>
<td>.25</td>
</tr>
<tr>
<td>1325</td>
<td>50 Front Underseat Heater</td>
<td>.75</td>
</tr>
<tr>
<td>1330</td>
<td>50 Rear Underseat Heater</td>
<td>.75</td>
</tr>
<tr>
<td>1332</td>
<td>50 Rear RH Underseat Heater</td>
<td>.75</td>
</tr>
<tr>
<td>1336</td>
<td>80 Front Underseat Heater</td>
<td>1.32</td>
</tr>
<tr>
<td>1342</td>
<td>80 Rear Underseat Heater</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td>1 Foot of Connecting Line</td>
<td>.17</td>
</tr>
</tbody>
</table>

### Example:
Unit with 3116TA Cat Engine & Options 1325 & 1342

- Front Heater (Std) 3.45
- 50 Front Underseat (Opt 1325) .75
- 80 Rear Underseat (Opt 1342) 1.32
- 76 Ft. of Heater Pipe with 0.17 quarts per foot 12.92
- Cap. of engine coolant system 18.44 qts. in Heating System
- 35.00 qts. in Engine
- 53.44 qts. Total Capacity (14.36 gal.)
WINDOWS AND WINDSHIELDS

WINDSHIELD GLASS REPLACEMENT
The windshield is one of two types: four-piece flat or two piece curved.
1. Remove vertical filler strip in glazing rubber on each side of broken glass; remove horizontal filler strip in glazing rubber on top and bottom of broken glass. It will be necessary to cut the horizontal filler strip after it is pulled past the glass.
2. Starting at a corner, push glass free of glazing rubber from inside of bus outward and remove.
3. Position new glass in glazing rubber.
4. Using installation tool, work glass into glazing rubber.
5. Seal glass to glazing rubber from outside of the bus with an adhesive sealant such as, Silastic 732 RTV Adhesive/Sealant.
6. Apply soapy solution to filler strip channel on glazing rubber to act as a lubricant for easier installation of filler strip.
7. Using filler strip tool, insert fillet strip into channel on glazing rubber.

SPLIT SASH WINDOW & GLASS REPLACEMENT
NOTE: The glass used in our bus meets FMVSS 205 and 217. Therefore, when a glass is broken, it should be replaced with identical glass.
1. Remove four screws securing window frame to bow.
2. Pull window to inside of body and remove.
3. Remove 6 screws (3 on each side of window) holding assembly together.
4. On bottom glass, simply pull aluminum channel off top and bottom of glass.
5. To remove glass from top part of window, remove 6 screws holding frame around glass.
6. Reassemble window by reversing above procedure.
7. Apply weather seal caulking around window frame to prevent leaking.

**WARNING:** When replacing broken or damaged glass, use extreme care at all times to prevent personal injury. This includes the use of proper replacement parts, tools and personal protective equipment, such as gloves and safety goggles.

**WINDOW LATCH REPLACEMENT**
1. Remove screw and block located in side channel directly above stationary glass.
2. Lower sliding sash so that latch enters large notch covered by block removed in Step 1.
3. With latch in large notch, push finger holds outward until inside edge is exposed. Pull latch out of finger hole opening.
4. Finger latch is pried off attached metal latch with any tool that provides leverage. Latch may now be removed and replaced.
5. Reassemble by reversing procedure.

**NOTE:** Lubricate latches and sliding seal of top window with silicone spray every 30 days. See decal on driver’s window.

**ENTRANCE DOOR GLASS REPLACEMENT**
1. Apply pressure against glass from the outside of the bus, starting at a corner and push glass and glazing rubber off of metal flange.
2. Remove glazing rubber from around glass.
3. Put glazing rubber on new glass.
4. Wrap a cord around the glazing rubber and rest the glass on the bottom flange of the opening from outside the bus.
5. Pull cord slowly and work glazing rubber onto metal flange.
6. Apply pressure to glass from inside of bus to assure proper seal.
WARNING: When replacing broken or damaged glass, use extreme care at all times to prevent personal injury. This includes the use of proper replacement parts, tools and personal protective equipment, such as gloves and safety goggles.

REAR VISION GLASS REPLACEMENT
1. Remove filler strip from channel in glazing rubber.
2. Apply pressure against glass from the outside of the bus starting at a corner and push glass and glazing rubber off of metal flange.
3. Remove glazing rubber from glass.
4. Put glazing rubber on new glass.
5. Apply a soapy solution to the flange on the bus body and to the filler strip channel on glazing rubber. This acts as a lubricant for easier installation. Wrap a cord around the glazing rubber and rest glass on bottom window flange from the inside of the bus body.
6. Apply pressure from the inside of the bus body to insure glass is seated properly. Pull cord slowly and work glazing rubber onto the window flange.
7. Using filler strip tool, insert filler strip into channel on glazing rubber. (Filler strip tool is available from your distributor.)
8. Apply clear caulking around glass and window flange on the outside of bus body to insure that no leaks occur.

TRANSIT SLIDING WINDOW MAINTENANCE
1. Remove screws in outside aluminum extrusion.
   **NOTE:** On push-out windows, when hinge screws are removed and interior latch released, window sash may be removed from frame.
2. Use putty knife to loosen sealer between window frame.
3. After sealer is loosened around entire perimeter of window frame, gently pry out using screwdriver.
4. Reverse procedure for installation.

**CAUTION:** DO NOT pry window frame from body without loosening sealer. Unless sealer is loosened, window frame will be bent.
Glass Replacement Procedure

1. To remove push-out transit sliding window, release window lever (1) located inside the bus at the bottom of each push-out window. Remove hinge screws (2) on outside of body. Lift and pull window out of section. To remove stationary transit sliding window, remove all screws (3) between inner frame (4) and outer frame (5). Lift and pull window out of section.

2. Remove four screws and take out vertical brace (6) located in the center of the window.

3. Remove two window stops (one on each side at top of window). Slide glass to the center of the window. Spread apart the inner frame (4) just enough to lift glass frame (7) out.

4. To remove glass from frame, slide rubber seal (8) out of vertical rail (9) exposing two screws. Window glass is removable after screws are removed.

5. Remove glass.

6. To replace glass, slip glazing vinyl seal around glass and slide into frame.

7. Reassemble by reversing procedure.

WARNING: When replacing broken or damaged glass, use extreme care at all times to prevent personal injury. This includes the use of proper replacement parts, tools and personal protective equipment, such as gloves and safety goggles.
WINDSHIELD WIPERS

WIPER ARM REMOVAL & INSTALLATION
To replace the wiper arm assembly if damaged, follow the procedure outlined below.

NOTE: Before removing any wiper arm, it is first necessary to operate the wipers briefly, stopping the blades in the normal park position.

First install a .1 pin in hole located on wiper arm above the rubber boot in order to keep spring in stationary position during reinstallation. Remove the cap nuts, which secure the wiper arm and idler arm to the wiper and idler shaft, respectively. Remove the wiper arm and place new arm (Blue Bird No. 0348177) over wiper shaft and make sure the new arm is replaced in the same position as the old arm was removed. Place original cap nuts on shafts and tighten.

WASHER SOLUTION RESERVOIR
Periodically check the windshield washer solution reservoir, located in the side panel below the driver’s window to be sure there is an adequate supply of fluid at all times. The solution used is a 50-50 mixture of methanol alcohol and water.

WIPER ASSEMBLY REPLACEMENT
To replace wiper assembly (Blue Bird No. 0348144), loosen lock nut, remove screw and pull wiper assembly loose from wiper arm. Replace the wiper assembly and use original screw and lock nut. Tighten lock nut securely, but do not tighten enough to compress the saddle. Blade must be free to move on axis (machine screw) and within the saddle. Threading the lock nut until flush with machine screw end will give a secure and serviceable installation.

WIPER REFILL REPLACEMENT
To remove wiper refills, follow the procedure outlined below.
1. Lift end clip with screwdriver as shown in. This releases locking indentations (A) and allows end clip retainers (B), to be removed through blade claw.
2. Repeat procedure to remove retainer clip on opposite end of wiper.
3. New end clips are provided with replacement Anco refills. To install, remove one clip and slide the refill through all claws until end clip locks into place.
4. Install second end clip, snap-locking devices A and B into place to secure refill.

49
LOWER SIDE PANEL REPAIR PROCEDURE

1. Remove the lower portion of the side panel by carefully drilling out the vertical rows of rivets on each side of the panel from the bottom of the floor line rub rail to the bottom of the skirt and the rivets attaching the bottom rub rail to the panel to be removed. Cut the panel not less than one inch below the floor line rub rail and remove.

2. Clean to bare metal the one-inch wide section of panel left below the floor line rub rail and apply a one-inch wide bead of Amicon two-component epoxy, TX-4009 or equivalent, following directions and recommendations of the adhesive manufacturer.

3. Insert the replacement panel between the rub rail and the original side panel far enough to insure a minimum of 1/2 inch of the replacement panel is under the rub rail. Install Cherry SSPV 86 blind rivets, Blue Bird P/N 0888222 on 3 1/2 inch centers through the rub rail lower flange and the new and old side panel.

4. Replace the vertical rows of rivets and the rivets attaching the bottom rub rail with the same type, size, and quantity of fasteners as was used in the original construction or with Cherry SSPV 86 blind rivets, Blue Bird P/N 0888222, as necessary.

5. Allow the adhesive to cure the proper amount of time (fourteen days at room temperature for the Amicon TX-4009) before returning the vehicle to service.

SPARE TIRE LOCATION & REMOVAL

TIREF COMPARTMENT

If your unit is equipped with a spare tire compartment, the following procedure should be used to remove and replace spare:

1. Unlatch the tire compartment door and secure in the open position with the chain and hook.
2. Pull out the rack.
3. Remove the wheel hold down clamp and lift off the wheel. Reverse the procedure above to replace the wheel.

WARNING: At all times stay from beneath tire.

TIREF CARRIER

(AAFE)

The tire carrier may be mounted on either the right side or left side of the chassis frame behind the rear wheels. It requires two people to safely change the tire. The following procedures should be followed:
1. Remove the two securing nuts and rotate tire out of holes.
2. Through access hole, insert lug wrench, placing socket over hex head on shaft and turn clockwise and disengage ratchet.
3. Slowly lower tire by turning counterclockwise.

**WARNING:** Hold wrench securely while lowering tire to prevent weight of tire from causing lug wrench handle to slip out of operator's hand.

4. Remove lifting platform from tire.
5. To raise tire, reverse procedures, making certain to engage ratchet before cranking clockwise.

**WARNING:** At all times stay from beneath tire.

(AARE)

Tire access can be gained by the following procedure:

1. Remove rectangular access plate in floor near stepwell (Fig.1).
2. Remove two bolts from round access plate above second step in stepwell and rotate plate as to expose access hole (Fig.2).
3. Remove both safety locknuts in top of the tire carrier by using the tire lugwrench and handle (Fig.3).
4. Install tire lugwrench and handle through access hole in stepwell, turn counterclockwise and reach through floor access to release the rachet angle (Fig.4).
5. Slowly let the tire down by turning the wrench clockwise. Being careful not to let the handle hit the side of the stepwell. Centering the handle in the lugwrench will help (Fig.5).
6. Reverse the process to reinstall the tire.
TIRES, WHEELS & RIMS

WARNING: An inflated tire and rim can be very dangerous when it is misused or worn out. Many accidents, some fatal, have resulted from improper handling and operation of bus rims and wheels. It is, therefore, of the utmost importance that the precautions outlined on these pages be carefully followed by all persons servicing bus rims and wheels to avoid personal injuries and costly damage.

Both the tubeless type and tube type tires are used on the All American. The tubeless tires are mounted on 15 degree drop-center rims and wheels. The tube type tires are mounted on two-piece flat base rims or wheels or three-piece flat base rims or wheels.

DAMAGED TIRES

WARNING: To help avoid personal injury and/or property damage if a blowout or other tire damage occurs, obtain expert tire service help if you can. If you must remove the wheel and change the tire without such help, take the following precautions:

• If the tire looks as if it may contain air under pressure, stand to the side and check whether the wheel assembly appears normal by comparing it to another wheel assembly on the vehicle. Check whether the side ring and lock ring around the wheel rim (if so equipped) are seated properly for duals, look between the tires to check this. If they look as if they are not seated properly, or if you cannot be sure, stay away from the tire and wheel and do not attempt further repair without expert tire service help.
• If the side ring and lock ring appear to be seated properly (or the wheel is not so equipped), let the air out of the tire by taking out the valve core. If you have a way to put air back in a tire, note that it is good safety practice to let the air out of both tires of a dual assembly before taking off the damaged tire and rim assembly from the vehicle. After letting out the air, take off the tire and rim assembly and put on the spare wheel and tire assembly.
• If you are not fully expert on the procedures to follow, and/or are not equipped with the proper tools and equipment, again, do not attempt to raise the vehicle, or remove or install the tire and wheel assembly obtain expert tire service help.
• Do not put air back in a tire that has been run flat, or is seriously low on air, without first having the tire taken off the wheel and the tire and tube checked for damage.
• Note that taking off and putting tires on bus wheels requires proper tools, safety equipment and special training. A person can be badly injured and/or damage can result from using the wrong service methods. Bus tires and wheels should be serviced only by trained people using the proper equipment.
• When putting air in a tire on the vehicle, stand to the side and use a clip-on chuck and hose extension. Never add to your tires unless an accurate pressure gauge is also used. In choosing the right tire pressure, be careful not to go past the maximum pressure capacity shown on the tire.

CAUTION: Tire inflation pressure must not exceed the recommendations of the tire and/or wheel rim manufacturer for the specific load, speed and application. The inflation pressure on the tire sidewall does not take the wheel or rim capacities into consideration. Tires should not be inflated above the pressure listed on the label without consulting your tire/wheel distributor.

WHEEL AND RIM - SAFETY

Wheels must be properly maintained because improperly maintained wheels and wheel components can adversely affect the life of the tire and wheel. A tire when inflated is potentially very destructive. Accidents are caused by careless handling and inexperience. You must follow the safety procedures as outlined by the following: Obtain safety literature from your wheel and rim distributor, a wheel and rim manufacturer, NHTSA or OSHA, or, in addition, if you have any questions, consult the distributor or manufacturer directly. The load
carrying requirements of each vehicle should also be determined before selecting the proper tire/wheel combination. Always remember that the weakest weight carrying component vehicle (i.e., tire, wheel, axle, bearings, etc.) determines its overall maximum and safe load carrying capacity for the vehicle.

**WARNING:** There have been many reported injuries and deaths from improper handling of wheels and rims. Failure to follow directions is the leading cause of such accidents. Obtain procedures from wheel and rim manufacturer before working with a wheel or rim. Follow also the following rules:

The tire and wheel must always be properly matched. Do not mount a 20 inch tire on a 22 1/2 inch wheel. Failure to strictly adhere to these important instructions will result in an explosive separation and will cause serious bodily injury or death. It is very important to determine the size of each component before any assembly operations commence.

When replacing tires, use the same size, load range and construction type as originally installed on the vehicle. When replacing wheels, use original equipment manufacturer’s wheels or equivalent available from your dealer with equivalent capacity, width, offset and mounting configuration as those originally installed on your vehicle. Use of improper replacement wheels and tires may adversely affect ride, handling, load carrying capacity, bearing life, the clearance to body and chassis components, vehicle ground clearance, vehicle width and brake cooling. Do not intermix rim, lock ring and wheel components from different manufacturers.

**TIGHTENING WHEEL STUD NUTS**

**CAUTION:** When the bus, or wheels or fasteners are new, have a technician tighten wheel stud nuts and/or rim clamp nuts with a torque wrench at 100, 500 and 1000 miles (180, 800 and 1600 kilometers). This precaution is necessary because the clamping system used on the wheels must seat before the fasteners will hold a uniform clamp load and remain fully tightened. Also, have a technician tighten wheel stud nuts and/or rim clamp nuts with a wrench after installing any wheel. In addition, nut tightness on all wheels should be set with a torque wrench every 1000 miles (1600 kilometers).

The following procedures, as applicable, should be used when installing or tightening wheels.

**DISC WHEEL**

Mount front wheel or inner dual wheel over studs, being careful not to damage stud threads. Draw up nuts alternately in the sequence as shown. Do not tighten them fully. (Tighten nuts to 450 - 500 ft. lbs. using the same alternate sequence.) Mount the outer wheel and repeat the entire procedure. Torque outer nuts to 450-500 ft. lbs.

**SPOKE WHEELS**

Place rims and spacer band on wheel. Secure clamps evenly in position by tightening the nuts by hand. Tighten the nuts to 50 ft. lbs. using the alternate sequence as shown. Check the wheel wobble, then rotate the wheel so that the furthest position out is at the top. Tighten the nuts to 100-150 ft. lbs. using the procedure shown. Torque the nuts to 200-250 ft. lbs. using the procedure shown. **NOTE:** For dual tire installations, position outer tire and wheel assembly so that valve stems will be in adjacent holes or spaces.

Tire size, rim size and tire inflation pressure can be located on certification plate located in driver’s area.
JACKING INSTRUCTIONS

1. Park vehicle on flat, level concrete or comparable surface capable of supporting jacking device.
2. Apply parking brakes.
3. Place chocks at front and rear of tires opposite wheel/or wheels to be lifted first.
4. Use jacks and jack stands or blocks of sufficient capacity to support the vehicle. Following the jack manufacturer’s recommended procedure, place jack securely under axle at spring or suspension beam and lift to required height for servicing. Be sure any locking device on the jack is in place and operating and solidly support the vehicle under the main frame rails with jack stands or blocks before working under or around the bus.
5. After servicing is complete, reverse above procedure.

CAUTION: Bumpers provided on Blue Bird buses are designed to protect the vehicle and occupants from front and rear collisions. However, the AAFE may be lifted by front and rear bumpers with the use of bumper jacks. NOTE: All instructions 1 thru 5 must be followed.

ENGINE OPERATING INSTRUCTIONS

WARNING: Never idle engine in closed areas. Never sit in a parked or stopped vehicle for any extended amount of time with the engine running. Exhaust gases, particularly carbon monoxide, may build up. These gases are harmful and potentially lethal. Carbon monoxide is colorless and odorless, but can be present with all other exhaust fumes. Therefore, if you ever smell exhaust fumes of any kind inside your vehicle, have it inspected immediately by your dealer and have the condition corrected. Do not drive with exhaust fumes present.

DIESEL ENGINE STARTING PROCEDURE

1. Apply parking brake.
2. Place transmission shift lever in neutral position.
3. See appropriate engine manufacturers operating manual for proper starting procedures. Starting procedures vary from different engine manufacturers and also varies with temperature.
4. After engine starts, release accelerator to maintain a fast idle (1000-1600 rpm) until the engine is warmed up.

IMPORTANT: Do not keep starter engaged for more than maximum of 30 seconds followed by 120 seconds (2 minutes) off time. If engine fails to start after a reasonable time, determine cause of failure. Pumping the accelerator will in no way assist in starting the engine. Refer to engine manufacturers recommended procedures. DO NOT RACE THE ENGINE TO SPEED WARM-UP!
STARTING WITH BOOST CABLES

WARNING: Batteries give off flammable fumes that can explode. Prevent sparks near the batteries. They could cause vapors to explode. Do not allow battery cable ends to contact each other or the engine.

CAUTION: Do not smoke when observing the battery electrolyte levels. Electrolyte is an acid and can cause personal injury if it contacts skin or eyes. Always wear protective glasses when working with batteries.

Your bus has a 12-volt starting system. Use only the same voltage for boost starting. The use of a higher voltage will damage the electrical system.

Always connect the boost cables in parallel with the bus battery cables, Negative (-) to Negative (-) and Positive (+) to Positive (+). Do not reverse the battery cables. The alternator can be damaged. Attach ground cable last and remove first.

1. Fasten the positive (+) clamp of the boost cable to the positive (+) post of the battery.
2. Fasten the negative (-) clamp of the boost cable to the negative (-) post of the battery.
3. Start the engine.
4. After the engine starts, disconnect the negative (-) boost cable from the battery.
5. Disconnect the positive (+) boost cable from the battery.

COLD START AID

The COLD START AID is designed as an aid to start the diesel engine in temperatures below freezing. This cold start aid utilizes a pressurized cylinder of Ethyl Ether which is injected into the intake manifold on the engine. The Ether may be injected prior to cranking. To operate, press button for 1 second and release. Wait 2 seconds and engage starter. For temperature below zero, repeat the above steps. Use the aid only for starting.

WARNING: Ether starting fluid is highly flammable and toxic. Observe the precautions printed on the container when using or storing this fluid and when discarding the empty containers.

NOTE: Ether capsule starting aids, or spraying ether into the air intake system, is not recommended.

USING ENGINE AS A BRAKE

In descending a steep or long grade it is a good practice to use the engine as a brake to retard vehicle speed. Reduce speed before the grade and shift into a lower gear (with either automatic or manual transmissions), being careful to select a gear which will slow the vehicle without overspeeding the engine. Under such conditions, use the brakes sparingly to prevent them from overheating, which reduces brake effectiveness.

WARNING: Do not take transmission out of gear when going down a steep or long grade. You may not be able to get the transmission back in gear, and the drastic slowing of engine speed could reduce air pressure supply to the air brake system, and result in a reduction of brake capacity.

ENGINE HIGH IDLE SWITCH

The high idle control on the AARE positions the throttle lever at high idle when air supply pressure is insufficient for normal operation of the throttle system. This allows the engine to be warmed while the air system is being charged. The high idle can be activated by the electric toggle switch located on the instrument panel when air system is at normal operating pressure. With the transmission in neutral and the parking brake applied, move toggle switch to high position to raise speed to a constant high idle (900-1000 RPM). Before shifting into gear, return switch to low position.

CAUTION: High idle must not be engaged except when transmission is in neutral and parking brake is applied.
***ENGINE WARNING SYSTEM***

Your unit may have an optional alarm system to signal low oil pressure and high engine temperature. If the engine temperature exceeds 210 degrees, or if the oil pressure drops below 6 PSI, a buzzer sounds and an indicator light glows.

**CAUTION:** If the alarm system sounds, shut the engine off immediately. Operation of the engine after the alarm sounds could cause serious engine damage.

***ANTIFREEZE***

The unit is equipped with a 50-50 solution of antifreeze and water. This mixture protects to -30 degrees F. The driver should check antifreeze before taking unit into cold climate. For protection to -50 degrees F. below zero, the mixture should be 70 percent antifreeze and 30 percent water. Never have more than 70 percent antifreeze.

**CAUTION:** Cold water should never be poured into the cooling system when engine is hot. Wait until engine cools, then add coolant with engine running.

**WARNING:** Extreme care must be used when removing radiator cap. As coolant becomes hot, pressure is built up in the cooling system. Rapid venting and/or removal of radiator cap will cause coolant to boil up and spray out and can result in serious burns. Slowly vent off pressure before removing radiator cap.

***STARTING THE AARE FROM THE REAR***

Move switch from front to rear position and press start button. Note, the transmission must be in neutral. Be sure everything is clear of all belts. To stop engine, move switch to stop position, then return switch to front position. If engine has been started from the rear, it must be stopped at the rear and if it has been started from the front it must be stopped from the front.

While working on the engine, the front-off-rear selector switch should be turned to the off position for safety.

***AIR INTAKE HEATER (CATERPILLAR 3116 ONLY)***

The Caterpillar 3116 is equipped with an air intake heater to aid starting and reduce white smoke. The intake heater will automatically come on when the ignition is switched on and the engine is below 65 degrees fahrenheit. The heater will stay on for 30 seconds before cranking, if desired, for cold weather preheat. (This preheat should enable unaided starting to -20 degrees fahrenheit if the batteries are fully charged.)

**WARNING:** Never use spray ether to start the 3116. The intake heater element could ignite the ether, causing explosion or flame.

When the engine is cranked, the heater will also come on and stay on after the engine starts. The heater will stay on until the engine water jacket reaches 85 degrees fahrenheit or 7 minutes has elapsed. The heater will also go off if the engine stalls. When the heater is on, the indicator light on the instrument panel will be on and the ammeter may indicate discharge.

***NOISE EMISSIONS WARRANTY***

Blue Bird Body Company warrants to the first person who purchases this vehicle for purposes other than resale and to each subsequent purchaser that this vehicle, as manufactured by Blue Bird, was designed, built and equipped to conform at the time it left Blue Bird control to all applicable U.S. EPA Noise Control Regulations.
This warranty covers this vehicle as designed, built and equipped by Blue Bird and is not limited to any particular part, component or system of the vehicle manufactured by Blue Bird. Defects in design, assembly or in any part, component or system of the vehicle as manufactured by Blue Bird, which at the time it left Blue Bird control, caused noise emissions to exceed Federal standards, are covered by this warranty for the life of the vehicle.

**FUEL & LUBRICANT REQUIREMENTS**

**DIESEL FUEL**

All American units equipped with diesel should take advantage of the high energy content and generally lower cost of No. 2 diesel fuel. Experience has shown that diesel engines will operate satisfactorily on No. 1 fuel.

**CAUTION:** If gasoline is poured into a diesel fuel tank by mistake and the engine is operated, the pump and engine will be damaged unless entire system is drained.

**CAUTION:** This coach may be equipped with a center mounted 60 gallon fuel tank and long filler neck. Use caution when filling with a high delivery nozzle to prevent spillage.

**WARNING:** FUEL SPRAY MAY CAUSE INJURY, REMOVE CAP SLOWLY. Do not fill more than 95% of liquid capacity.

**RECOMMENDED LUBRICANT**

**CAUTION:** Do not mix petroleum based and synthetic lubricants or different brands of synthetic lubricants due to possible incompatibility. In addition there may be increased lubricant change intervals recommended for synthetic lubricants. Consult manufacturers label for lubricant requirements.


**NOTE:** For engine oil lubricant, follow engine manufacturer’s recommendations for SAE grades.

**COMPRESSED NATURAL GAS**

**INTRODUCTION**

The compressed natural gas (CNG) fuel system consist of DOT certified storage tanks that store CNG at up to 3600 psi that replace the fuel tank, a structure to hold and protect the tanks, metallic fuel lines to deliver the fuel, high and low pressure regulators to reduce the pressure entering the throttle body, a fuel shut-off solenoid and the throttle body which delivers the CNG/air mixture to the engine. The regulator includes an integral heater to preheat the CNG for anti-icing control.

A pressure relief system is part of the fuel system. This system is designed to vent the tank contents when pressure and temperature become excessive.

A fill connection is located near the entrance of the bus.

If so equipped, the engine powering this bus is engineered specifically for use with CNG. Operation and maintenance procedures are similar to those used on gasoline or diesel engine vehicles. Differences identified are obvious.
OWNER / OPERATOR RESPONSIBILITIES

The owner/operator should be aware of the code requirements and be familiar with applicable codes which apply to the area of operation. The owner/operator should be aware that fuel cylinders for CNG (Compressed Natural Gas) must be inspected every three (3) years in accordance with NGV-2 specifications. The owner/operator should be aware that cylinder expiration date is fifteen (15) years after date of cylinder manufacture and that cylinders must be replaced. This testing and certification is not covered by Blue Bird warranty.

WARNING: Due to the dangerous potential of high pressure cylinders, it is suggested that anyone involved in their use be completely familiar with the Department of Transportation "Code of Federal Regulations Title 49" and the various Compressed Gas Association pamphlets that are available covering the care and use of high pressure cylinders. Regulations do not permit filling NGV cylinders with an overcharge.

NATIONAL FIRE PROTECTION ASSOCIATION #52 states:

Cylinders shall be manufactured, inspected, marked, tested, retested, equipped and used in accordance with U.S. Department of Transportation (DOT) or Canadian Transport Commission (CTC) regulations, exemptions or special permits specifically for CNG service and shall have a rated service pressure of not less than 2400 psig at 70 Deg. F. (16.5 MPa at 21.1 Deg. C).

Pressure vessels shall be manufactured, inspected, marked and tested in accordance with the rules for construction of unfired pressure vessels, Section VIII (Division 1), ASME Boiler and Pressure Vessel Code.

When a vehicle is involved in an accident or fire causing damage to the CNG container, the CNG container shall be replaced or removed, inspected and retested in accordance with the document under which it was originally manufactured before being returned to service.

When a vehicle is involved in an accident or fire causing damage to any part of the CNG fuel system, the system shall be retested before being returned to service.

Damaged supply lines shall be replaced, not repaired.

The owner or user or both shall maintain all containers, container appurtenances, piping systems, venting systems and other components in a safe condition.

As a precaution to keep pressure relief devices in reliable operating condition, care shall be taken in the handling or storing of compressed natural gas containers to avoid damage. Care shall also be exercised to avoid plugging by paint or other dirt accumulation of pressure relief device channels or other parts which could interfere with the functioning of the device. Only qualified personnel shall be allowed to service pressure relief devices. Only assemblies or original manufacturer’s parts shall be used in the repair of pressure relief devices unless the interchange of parts has been proved by suitable tests.

CODE OF FEDERAL REGULATIONS #49 states

In addition to the requirements of this paragraph, cylinders marked DOT-3HT must be requalified in accordance with CGA pamphlet C-8 and must comply with the following:

Cylinders built prior to implementation of FMVSS 304 must be subjected, at least once in three years, to a test by hydrostatic pressure in a water jacket, for the determination of the expansion of the cylinder. A cylinder must be condemned if the elastic expansion exceeds the marked rejection elastic expansion.

Cylinder service life must not exceed 15 years.

Each cylinder must be reinspected and hydrostatically retested every three years in accordance with 49 CFR 173.34(e) as prescribed for DOT-8HT cylinders, except that the rejection elastic expansion criteria does not apply, permanent volumetric expansion must not exceed 5 percent of total volumetric expansion at test pressure and retest dates must be imbedded in the epoxy coatings in a permanent manner other than stamping. Retest dates may be steel stamped on the shoulder of the top head in accordance with 178.BB-15(c). Reheat treatment or repair of cylinders not authorized.
FUEL SYSTEM DESCRIPTION

The fuel system begins with DOT certified tanks to hold compressed natural gas (CNG) up to 3600 psi, corrected to standard day temperature. The tanks are high strength aluminum wrapped with fiberglass for further strength.

The fuel exits the tank in route to the engine through manually controlled shutoff valves. These include an integral pressure relief valve consisting of a combination rupture disk (for pressure) and fuse plug (for temperature) to vent the contents of the tank should high pressure and high temperature occur, such as in a fire. The rated pressure and temperature for relief is 212 degrees Fahrenheit.

From the valve fuel flows into a common fuel line through high pressure stainless steel compression fittings. The tanks are joined to the common line through high pressure stainless steel tee's and crosses. Any open tank thus communicates to any other open tank. So for fueling, the fuel is backfed through the common line to all tanks (with open valves) simultaneously. The tank shutoff valves only isolate the interior of the tanks: The tee’s on the valves still have the high line pressure.

Do not uncouple fittings until all tanks are closed and pressure has been purged from the line.

The lines are high pressure rated 3/8 stainless steel seamless tubing which carries the fuel to the high pressure regulator.

In refilling, the fuel enters the fill valve on the entrance side of the bus and then flows through a check valve into the common tubing before reaching the tanks.

From the high pressure regulator, the fuel flows to the shutoff solenoid. The shutoff solenoid is activated by the ignition switch, engine operation, and the fire suppression system. The loss of any of these will shut off fuel supply to the low pressure regulator (LPR).

The dashboard fuel gauge is proportional to the pressure when corrected to 70 degrees Fahrenheit.

NOTE: Fuel level is only accurate for the tanks that are open.

SAFETY CAUTIONS & WARNINGS

Both gasoline and CNG are volatile flammable fuels that are safe to work around when necessary precautions are taken. As on a gasoline fueled system, carelessness with CNG can lead to a fire or explosion when a leak occurs. CNG will not pool and spread like gasoline. It has a narrower range of flammability than gasoline as well as a higher ignition temperature. Despite these relative safety advantages, fire potential does exist. CNG is lighter than air, therefore, it can collect in the higher regions of a room and possibly go undetected, creating fire potential.

Since the fuel system is a very high pressure system employing a flammable gas, all safety issues normally considered in these situations should be applied. Some of the more obvious precautions are listed below. This list is not necessarily intended to be complete, and responsibility for assuring full safety is that of the person(s) doing the work or operating the system.

WARNING: Handle natural gas with care. Compressed natural gas is a volatile fuel stored under high pressure. If fuel storage or delivery components are installed, serviced or operated improperly, fire, explosion and/or serious injury could result. Do NOT smoke while working on or around natural gas equipment. Avoid flames, sparks and operation of electrical devices in or around a vehicle with a possible natural gas leak. Properly tighten all connections and thoroughly check for leaks after servicing fuel system. Natural gas fumes may cause sickness or death. Work in well ventilated area.

WARNING: Protect against high pressure CNG. Compressed natural gas is stored and routed to the engine at a pressure up to 3600 psi. Do NOT attempt to remove or disassemble any fuel system component while it is pressurized. Explosive separation of components and escaping natural gas can cause serious injury. Avoid the hazard by relieving pressure before disconnecting any CNG fitting or line. Properly tighten all connections and thoroughly check for leaks before applying pressure. Never attempt to over pressurize the system.
WARNING: Protect against extremely cold escaping CNG. Compressed natural gas is stored at an extremely high pressure. If compressed natural gas escapes from a leak, it will expand into and extremely cold (-260 deg F) gas. Severe frost bite may occur from contact with escaping natural gas or its associated components. Avoid the hazard by relieving the pressure before disconnecting any CNG fitting or line. Properly tighten all connections and thoroughly check for leaks before applying pressure.

WARNING: Storage tanks must be tested according to specified procedures at required dates. Failure to do so relieves the manufacturer of all responsibility and is a violation of federal law. See manufacturer's label.

CAUTION: In the event of an accident, all tanks, lines and fittings should be thoroughly checked by qualified personnel before the vehicle is used again.

NOTE: All valves are closed when turned fully clockwise viewed from the top of the valve handle, and open when turned counterclockwise viewed from the top of the valve handle.

CAUTION: Always provide good ventilation, including near roofs and ceiling.

CAUTION: Do not work in a noisy environment, the sound of leaking gas may go undetected.

WARNING: Never attempt to find a leak with your hands. A large leak can freeze burn the skin.

WARNING: Never place hands or any other part of the body on a leak.

IMPORTANT: Always have rated fire extinguishers on hand and automatic fire suppression equipment.

CAUTION: Avoid heat near pressure relief valves; the manufacturer's rating is 212 degrees Fahrenheit for the relief valve. Should it vent, the entire area will be filled with natural gas.

IMPORTANT: Rust or corrosion on tanks, lines, fittings and valves can be a serious problem. Any part with serious corrosion should be replaced.

IMPORTANT: Fiberglass coating on tanks should be in excellent condition. Any cracks or serious scrapes may require tank replacement. Contact the manufacturer.

WARNING: Tanks cannot be filled to more than 3000 psi or 3600 psi temperature corrected.

IMPORTANT: Use only authorized refueling stations with adequate pressure controls and venting capacity.

NOTE: Venting contents of tanks should follow any federal and state guidelines, including EPA.

WARNING: Use only fuel connections designed for use with that on the bus. Do not attempt to force damaged fittings.

WARNING: Keep sources of heat and ignition away from fuel system and refueling apparatus.

For more information see drawing #1589001 in the owners information package supplied with the vehicle.

**COMPRESSED NATURAL GAS FUEL**

The performance and reliability of a Natural Gas Vehicle is dependent upon the quality of fuel used. BTU content of natural gas can vary depending on locale. Excessive moisture can cause driveability problems, loss of power and regulator freezing. Other contaminants, specifically lubricants and oil, can cause serious damage which is not covered by the engine manufacturer's warranty. In addition, poor quality fuel can affect emission certification.

CAUTION: It is the owner's/operator's responsibility to insure that clean, quality fuel is used to prevent damage to the fuel system components and power plant. Damage caused by poor quality fuel is not covered by Blue Bird warranty.
Fuel control systems used on engines fueled by compressed natural gas contain electronic sensors and other delicate components which are not tolerant to contaminants. Vehicle performance is dependent upon clean fuel and regular scheduled vehicle maintenance. Compressed natural gas is expected to be delivered from the compressor station and storage cascade free of contaminants including oil, water, and particulates.

Conditions exist in some CNG fill stations that cause inferior fuel to be loaded in the vehicles' fuel storage system.

The driving range of a natural gas vehicle is dependent upon driver, fuel BTU content, vehicle weight, gear ratio, tire size, terrain, engine tune and condition, frequency of starts and stops, full load of fuel and other factors.

**COMPRESSED NATURAL GAS FILTERS**

Particulate and coalescer type filters are installed in Blue Bird CNG fuel systems. The primary filter is of stainless steel construction and is located at the fill point. This filter can be checked for contamination by closing main shutoff valve on frame and then relieving pressure which is trapped between the check valve in the fill nozzle and the main system check valve. The owner/operator should establish a service interval based on quality of gas from the compressor station. It is recommended that the filter sump be checked after the initial fill and several fills after and then develop a schedule based on need; every fill or every fifth fill or longer.

The secondary filter has a black anodized housing and is adjacent to the fuel shutoff solenoid close to the engine. The secondary filter can be checked after relieving system pressure. This is best accomplished by closing the main shutoff on frame and running engine until fuel supply is depleted and pressure is zero. Contamination of the secondary filter should not occur if a proper maintenance schedule has been followed at the fill point primary filter. Contamination of the secondary filter also shows that CNG storage cylinders on the vehicle are contaminated. The owner/operator should insist that fuel from a compressor station should be clean and dry.

Replacement filter elements are available through the Blue Bird Service Department.

**WARNING:** Natural gas is extremely flammable and high pressure gas can cause personal injury, loss of sight, or death.

**FUEL COMPOSITION**

Natural gas composition varies throughout the country, depending on original gas composition and processing. Pipeline quality natural gas is composed of several different gases, of which methane typically accounts for 85 to 99%. Other hydrocarbons present in natural gas include ethane, propane, some butanes, and trace amounts of other hydrocarbons. Nitrogen, helium, carbon dioxide, and trace amounts of hydrogen sulfide, water, and odorants are also present. Most natural gas available does not vary significantly in content; however, significant variations are more likely from small gas utilities. The removal of all carbon dioxide, water, hydrogen sulfide, and odorants is required for liquefaction, thus LNG does not contain these constituents.

The importance of gas composition to users of NGVs is as follows:

Large amounts of non-methane hydrocarbons will enrich the fuel mixture, reduce the octane number, lead to increased hydrocarbon emissions, and increase the potential for engine knock. Accordingly, engine parameters such as air/fuel mixture and ignition timing should be adjusted on the basis of the composition of the local natural gas supply.

**REFueling**

**CAUTION:** Refueling must be conducted in well ventilated areas to prevent accumulation of dangerous gas levels.
The National Fire Protection Association has recommended guidelines for CNG refueling systems. State and local regulation regarding NGV refueling may preclude economic feasibility of indoor refueling (such as in New York City). However, the significance of this issue may diminish if increased experience with fuel leads to less stringent regulations.

CNG refueling transfers natural gas under pressure and may be set up as either slow-fill or fast-fill. Slow-fill generally uses overnight refueling and requires less costly refueling station equipment than fast-fill. However, fast-fill refueling time is only slightly longer than gasoline refueling time. LNG refueling transfers a cold (-260°F) liquid under pressure (around 15 psi) and generally takes slightly longer than conventional refueling because a greater volume of liquid is transferred to compensate for its lower energy content.

The refueling station has a supply connection hose and a coupling which must be properly attached to the fuel system fill valve. The supply side is regulated for maximum pressure and uses a proper purge valve when decoupling from the filler. The regulators and relief valves of the fill station must be checked for proper values and operation.

Fuel enters the bus coupling from the filler connection, travels through a one-way check valve into the fuel lines and then into any open tanks. Any tank that is open is in communication with any other open tank through the common fuel lines.

**CAUTION:** Do not refill with the engine running or any source of ignition or heat nearby. The refueling station must be in a safe working condition with approved operable relief and vent valves.

**NOTE:** A ground stud is provided for attachment of the grounding cable at the compressor station. Check that the tank shutoff valves are open. Any tank with an open valve will be filled, any tank with a closed valve will not. If the bus has been operating with some tanks closed, it is preferable to fill the empty tanks first and then fill the remainder. Fill to the desired pressure. Maximum is 3000 psi temperature corrected to 70 degrees Fahrenheit. (NOTE: Most fill stations have a dome valve to automatically make the temperature correction.) When fueling is complete, open the fill connector purge valve. Use only fuel filling couplings designed for use with the CNG. Do not force damaged couplings together.

**CAUTION:** A check valve is included in the system behind the fill connector to prevent backflow of fuel when purging and disconnecting the fuel nozzle

**NOTE:** The tanks are full at 3000 psi or 3600 psi and 70 degrees Fahrenheit. The pressure will vary with temperature. Decreasing with lower temperature and increasing with higher temperatures. Filling apparatus compensates for the temperature effect.

**WARNING:** Never fill to more than permissible pressure. Contact the manufacturer if an accidental overfill occurs.

**NOTE:** The fuel level is only accurate for tanks that are open. For example, if one tank is open and reads 1000 psi, then the fuel available to the engine is proportionate to the total capacity.

**SPECIFIC GRAVITY**

The specific gravity of natural gas relative to air (air=1.00) is 0.56 to 0.62 depending on gas composition. This indicates that natural gas is lighter than air. In the event of a natural gas leak, the gas will rise and dissipate given open conditions. There is no possibility of CNG accumulating in pools on the ground beneath a spill.

**NOTE:** Natural gas odorants allow its detection by humans before dangerous concentrations are reached.

In the case of LNG releases, the cold vapor initially released is heavier than the surrounding warmer air and thus stays low, near the ground (a visible vapor cloud is often formed from the condensation of water in the cold air-gas mixture). As the vapor cloud warms, it will increase in volume, become lighter than air, and rapidly dissipate.
FUEL TOXICITY AND SAFETY

Natural gas is a nontoxic gas. It is flammable under proper conditions. Additionally, it can cause suffocation if enough oxygen is displaced. LNG has the added safety concern of being a cold (-260°F) liquid under pressure. Severe frostbite may occur from contact with LNG or associated cold components. Furthermore, many common materials change their strength characteristics when exposed to LNG temperatures, thus presenting additional hazards.

WARNING: LNG tanks have the potential for explosions under circumstances such as those described for LPG explosions.

Although natural gas has odorants to aid in detection of leaks, these odorants are removed during liquefaction, thus LNG vapors can not be detected by smell. (NOTE: LNG odorants have been developed but are not commonly used due to the relatively restricted use of LNG at this time).

FLAMMABILITY

Autoignition temperature for natural gas at atmospheric pressure is 1004°F compared to an autoignition temperature range of 442 to 880°F for gasoline and approximately 500°F for diesel fuel. The risk of fire in the presence of an ignition source exists when the ratio of air to fuel is within flammability limits (i.e., fuel can not ignite if it is mixed with too much or too little oxygen). The flammability limits for natural gas are 5.3 to 15% volume of gas in air. For comparison, the flammability limits of unleaded gasoline are 1 to 7.6% volume of gasoline in air. As a practical matter, there is no oxygen present in CNG cylinders or LNG tanks, therefore ignition within the cylinder or tank is not possible. In the event of fuel leak, there will be a small area in which the air to fuel ratio is within the flammability limits. In a closed garage, or within the passenger compartment, ignition conditions are more likely to be met. Odorants used in CNG allow its detection before the lower flammability limit has been reached.

ANTIKNOCK PROPERTIES

Natural gas has a research octane rating of about 130, making it relatively resistant to engine knock. The antiknock property is a result of the high ignition temperature, resistance to autoignition, and the relatively low flame speed of natural gas. Antiknock properties allow the use of engine compression ratios in the range of 15:1 (compared to 8:1 to 10:1 for gasoline). The low flame speed of natural gas results in a longer duration of combustion. To compensate for the lower flame speed, ignition timing is advanced. As with other fuels, knock may occur with advanced ignition timing, prolonged combustion (i.e. too lean mixture), and excessively high compression ratios.

ENERGY CONVERSIONS

- 100 - 125 cubic feet NG = 1.0 gallon gasoline
- 136 cubic feet NG = 1.0 gallon diesel
- 1 cubic foot NG = 1000 Btu
- 114,000 Btu = 1.0 gallon gasoline
- 83,700 Btu = 1.0 gallon LNG

VEHICLE PERFORMANCE AND EMISSIONS

NGV performance, fuel economy, and emissions can be significantly altered with vehicle tuning (e.g., ignition timing, air/fuel ratio). Appropriate tuning adjustments can optimize either performance, fuel economy, or emissions. Alternatively, a compromise tuning may be effected. Tuning optimization for power generally increases emissions. Substantial improvements in performance and emissions can be obtained using natural gas conversion kits that are specially designed for a given vehicle make and model. Further improvements can be achieved with factory built, dedicated NGVs.
STARTING PROCEDURE
Make sure that the main shutoff valve and at least one tank valve are open. The fuel gauge shows empty if no fuel is available to the mixer. Check the tank and main fuel shutoff valves if no fuel is indicated on the fuel gauge.

NOTE: Fuel gauge takes time to register after turning the key.

Starting procedures are identical to those of a gasoline engine vehicle. With the vehicle in neutral, turn the key until the engine catches. Do not press the accelerator. If the engine has trouble starting depress the accelerator slightly and release when the engine catches. Pumping the accelerator in no way assists in starting the engine.

Engine operation and characteristics should be similar to those of a gasoline engine.

COLD START
For cold starts in low ambient temperatures, natural gas has an advantage over liquid fuels because it is already in the vapor phase. With correct conversion kit installation and vehicle maintenance, cold start ability is better with natural gas than gasoline.

OPERATION & MAINTENANCE of VEHICLE COMPONENTS
CNG vehicles require Department of Transportation (DOT) certified cylinders for the storage of pressurized (maximum 3600 psi) natural gas. Refueling port and lines with pressure safety valves must also be installed. High pressure fuel lines from the storage cylinder lead to a pressure regulator/reducer, which reduces gas pressure in one or two steps. In a fuel injected converted vehicle, a mixer/carburetor must be added for the injection of natural gas. In carbureted fuel systems, a specialized mixer/carburetor for natural gas may be installed. LNG vehicles require insulated, pressurized (10 to 35 psi) fuel tanks. LNG is vaporized in the fuel line and warmed in the heat exchanger generally located under the hood. Pressure is reduced by the pressure regulator before the vapors are transported to the mixer/carburetor.

MAINTENANCE
Service manuals supplied by converters and installers should be consulted for maintenance of NGV-specific parts. Components such as the pressure regulator/reducer can be checked with a pressure gauge to determine if the unit is operating properly. Measurements with an EGA can indicate proper air/fuel mixtures and ignition timing. NGV maintenance issues are briefly listed below.

CNG Cylinders - CNG cylinders must periodically be recertified to maintain compliance with DOT standards. The Compressed Gas Association has published several pamphlets with recommendations of standards for the inspection of compressed gas cylinders.

Oil Changes - Due to the clean burning characteristics of natural gas, collection of particulate matter in engine oil does not occur as rapidly as with gasoline. However, even though visual inspection of the oil may indicate that the oil is clean, oil compounds break down under engine heat. These chemical changes reduce the lubricating ability of the oil and stress the engine system. Therefore, it is recommended that the oil should be changed according to manufacturer recommendations, despite oil appearance. (NOTE: Considerably more data is needed to determine the conditions that influence reports of NGV oil maintaining lubricating properties longer than in gasoline engines.)

Spark Plugs - Spark plugs should be replaced as recommended by the vehicle manufacturer.

CAUTION: Do not use CNG pressure or vent lines to clamp, hang, connect or attach any items including harnesses, hoses, power steering hose, refrigerant hoses or any other item.
MANUAL FIVE SPEED TRANSMISSION

The standard transmission used in the AAFE is a five-speed Synchro-Mesh transmission. Refer to the gearshift knob for proper shift sequence.

CAUTION: The shift linkage has been improved for this model, resulting in a new shift pattern.

When trying to engage the shift lever into first or reverse gear, it will be necessary to follow these procedures:

Disengage the clutch and move the lever into first or reverse gear.
If the lever does not engage immediately, let the clutch partially back up, while keeping a gentle pressure against the shift lever until full engagement is accomplished.

CAUTION: Do not “ride the clutch” by resting your foot on the clutch when not shifting gears. Do not use the clutch to hold the vehicle at a standstill on an upgrade, as when waiting for a traffic light. Such misuse could cause premature clutch wear and damage.

ALLISON AUTOMATIC TRANSMISSION

MT 643

The Allison transmission provides four forward speeds and one reverse. Selective control is obtained through the selector lever located on the right area of dash. The selector lever must be in "N" (neutral) to start the engine. If the engine starts in any other position, the neutral start switch is malfunctioning. Use "D" for all normal driving conditions. The vehicle will start in first gear and as you depress the accelerator, the transmission will upshift to second, third and fourth gear automatically. As the vehicle slows down, the transmission will automatically downshift to the correct gear. Use (3&2) when the road load or traffic conditions make it desirable to restrict the automatic shifting to a lower range. When the conditions improve, return the range selector to the normal driving position. These positions also provide progressively greater engine braking power (the lower the gear range, the greater the braking effect). Use (1) when pulling through mud and snow or driving up steep grades. This position provides maximum engine braking power. Use R (reverse) for backing the vehicle. The vehicle should be completely stopped before shifting from a forward gear to reverse. Reverse gear provides the greatest tractive advantage.

CAUTION: In the lower ranges (1, 2 and 3) the transmission will upshift above the highest gear selected when the recommended engine governed speed for that gear is exceeded.

ALLISON TRANSMISSION CABLE ADJUSTMENTS

To properly adjust the transmission shift cable, the following must be done.

1. Place the selector in neutral with the cable connected at the selector and disconnected at the transmission.
2. Find neutral on the transmission. (This is accomplished by rotating the manual range selector shaft on the transmission all the way counterclockwise, then rotate it one click clockwise.)
3. Adjust the trunnion pin so that it slides easily in and out of the hole in the shift lever on the transmission. Check the neutral safety switch on the selector to be sure the engine will start only in neutral.
Adjust the mechanical modulator per the following procedure:
1. With the modulator cable disconnected at the engine, rotate fuel control lever on the engine to full throttle position.
2. Adjust modulator slip joint to push cable until the cable comes within 1/8 inch of bottoming, when throttle is wide open.
3. Adjust the clevis or trunnion on the end of the cable to permit “free pin” with the fuel control lever. Install and secure the pin.
4. Check accelerator linkage for the proper return to the idle position.
5. Check to be certain there is between 1 3/16” and 1 9/16” travel in modulator cable on all except Cummins AARE, it must be adjusted strictly by steps 1 thru 4 so it bottoms out.
6. If the throttle linkage is readjusted for any reason, the mechanical modulator must be readjusted as above.

MD3060 WORLD TRANSMISSION

The Allison electronic world transmission provides five forward speeds and one reverse. Fourth gear is a 1 to 1 ratio while the fifth gear is an overdrive with a .75 to 1 ratio. The push-button shift selector is located on the right area of the dash. The transmission and selector must be in "N" neutral to start the engine.

NOTE: Transmission and shift selector will return to "N" when engine is stopped and power switched off. If it does not return to "N" or starts in any other gear, unit has malfunctioned. Seek service immediately.

The push-button shift selector has R, N, D, down arrow, up arrow, a MODE button, and a digital display. When a range button has been pressed, a tone will sound, the SELECT indicator displays the chosen operation (if Electronic Control Unit (ECU) determines the shift is acceptable), and the transmission will shift to the starting range as indicated on the MONITOR display. In Drive, selection of a specific gear can be accomplished by pressing the UP or DOWN arrow buttons. Conditions resulting in the CHECK TRANSMISSION light located below shift selector will disable the pad and no tones will be heard. (See CHECK TRANSMISSION LIGHT)

A "MODE" button is located on the push-button shift selector to activate a second shift schedule. The initial start up is in primary (power mode) and secondary (economy mode) is selected by pressing the "MODE" button. The display will indicate the mode on for secondary (economy mode). In economy mode the transmission shift to higher gear at lower engine RPM.

With an Allison MD-equipped vehicle, it is not necessary to select the right moment to upshift or downshift during the changing road and traffic conditions. The Allison MD does it for you. However, knowledge of the gear ranges and when to select them will make vehicle control and your job even easier.

MD 3060 GEAR SELECTION

WARNING: In the event the operator leaves the vehicle, even momentarily, while the engine is running, be sure that the transmission is in Neutral, parking brake and/or emergency brakes are set and properly engaged, and the wheels are chocked. Unexpected and possible sudden vehicle movement may occur if these precautions are not taken.

R - Reverse

The vehicle must be completely stopped before shifting from Forward to Reverse or from Reverse to Forward. The SELECT indicator will display R and the MONITOR will display R when Reverse is attained.

N - Neutral

Use Neutral to start the engine, to check vehicle accessories, and for extended periods of engine idle operation. Under normal operation, the transmission is directed by the ECU to Neutral during the start-up procedure. This occurs automatically with the push-button selector. If the vehicle starts in any range except
Neutral, seek service immediately. Neutral is also used during stationary operation of the power takeoff (if your vehicle is equipped with a PTO). The SELECT indicator will display Neutral and the MONITOR will display Neutral.

WARNING: Do not allow your vehicle to coast in Neutral. This practice can result in transmission damage. Also, no engine braking is available in Neutral.

D - Drive
The vehicle will attain first gear when D is selected, and as the speed increases, the transmission will upshift automatically through each gear. As the vehicle slows down, the transmission will downshift automatically. The SELECT indicator will display the highest gear available and the Monitor will display the current operating gear.

2, 3, 4, 5 Gears
Occasionally, the road conditions, load, or traffic conditions will make it desirable to restrict the automatic shifting to a lower gear. Positions 2, 3, 4, 5, provide progressively greater engine braking for going down grades (the lower the gear, the greater the braking effect). The push-button selector utilizes arrow buttons. Push the Up or Down arrow to the desired gear. The SELECT indicator will display your choice and the MONITOR will display the selected gear when it is attained.

1st Gear
Use position (1) gear when pulling through mud and deep snow, when maneuvering in tight spaces, or while driving up or down grades. Low gear provides the vehicle with its maximum driving power and maximum engine braking power.

The transmission incorporates a hold feature to prohibit upshifting above the gear selected during normal driving. For downhill operation, however, the transmission may upshift above the highest selected gear when the engine governed speed is exceeded and damaging engine overspeed is a possibility.

DO NOT SHIFT LIGHT
The "CHECK TRANSMISSION LIGHT" is located on the shifter cover. The electronic control system is programmed to inform you if operating parameters have been exceeded and automatically take action to protect the operator, vehicle, and transmission. A diagnostic code will be registered when the CHECK TRANSMISSION light is on and also when other conditions are diagnosed which do not require the CHECK TRANSMISSION light to be on.

Every time the engine is started, the CHECK TRANSMISSION light comes on then goes off after a few seconds. This momentary lighting is to show that the lighting circuit is working properly. If the light does not come on during engine start, service should be requested immediately.

Illumination of this light, accompanied by 8 seconds of short beeps from the shift selector, indicates that shifts are being restricted. The SELECT digit on the display will be blank. Operation may continue in order to reach service assistance. The ECU may not respond to shift selector requests since operating limitations are being placed on the transmission; i.e., upshifts and downshifts may be restricted. Direction changes will not occur. For push-button shift selectors, the ECU will not respond to operator requests. The ECU will cause the transmission to shift to a safer gear and a Hold-In-Range. See Allison Operator's Manual for Hold-In-Range and reset procedure.

ALLISON AUTOMATIC TRANSMISSION DRIVING TIPS
USING THE HYDRAULIC RETARDER (AARE ONLY)

The function of the retarder is to provide auxiliary braking in all conditions by combining both hydraulic and clutch pack retardation capabilities. The retarder is installed on the rear of the transmission in place of the output housing. In most of the applications the output retarder is applied in conjunction with the service brakes. Selecting a lower hold range position when using this type retarder is recommended for maximum effect.
Observe the following cautions when using output retarder.

- Apply and operate the retarder with engine at closed throttle only.
- Do not use the retarder when road surfaces are slippery. Do not apply retarder control or de-energize the system at the master control switch.
- Observe transmission and engine temperature limits at all times. Select the lowest possible transmission range to increase the cooling system capacity and total retardation available.
- In the event of overheating, decrease vehicle speed and manually downshift to reduce retardation power requirements.
- Observe the retarder "Alert Light" to insure that the vehicle control system is functioning properly
- Consult the retarder manufacturer's owner/operator manual for additional information.

ACCELERATOR CONTROL

The pressure of your foot on the accelerator pedal influences the automatic shifting. When the pedal is fully depressed against the pedal stop on the floor, the transmission will automatically upshift near the recommended governed speed for the engine. A partially depressed position of the pedal will cause the upshifts to occur sooner at a lesser engine speed. With AT 545 & MT 643 the timing of the shifts is accomplished by using a cam and cable from the throttle. With MD 3060 an electronic signal tells the ECU how much the operator has depressed the pedal. This provides the accurate shift spacing and control necessary for maximum performance.

TWO SPEED AXLE WITH ALLISON TRANS MT 643 (AARE)

The two speed selector switch is located in the upper right corner of the engine compartment. The vehicle must be stopped, transmission in neutral, and parking brakes applied before selecting the desired axle range. Some vehicle motion is required to insure the engagement of the axle. Low range is used for lower speeds and applications requiring more power. High range is used for higher speeds and applications requiring less power.

DOWNSHIFT CONTROL & MT 643

The transmission can be downshifted or upshifted, even at full throttle, and although there is no speed limitation on upshifting, there is on downshifting and reverse. Good driving practices indicate that downshifting should be avoided when the vehicle is above the maximum speed attainable in the next lower gear. Therefore, good driving habits have been designed into the Allison transmission shift pattern. The downshift inhibitors within the valve body prevent those harmful shifts when the vehicle is going too fast for the next lower gear.

If the downshifts are attempted at excessive speeds, the inhibitors prevent the selected downshift until the vehicle reaches an acceptable speed.

DOWNSHIFT OR REVERSE INHIBITOR FEATURE With/MD3060

Although there is no limitation on upshifting, there is on downshifting and shifts from Neutral into Drive or Reverse. If a downshift or Neutral-to-Range shift is selected when the engine speed or throttle position is too high, the ECU will prevent the shift from occurring until a lower speed is reached. If idle speed is too high, shifts to range are inhibited. A continuous "beep" tone is emitted if reverse is selected during forward movement or a neutral-to-range shift is selected at too high an engine speed.
COLD WEATHER STARTS MD 3060

Most World transmissions are programmed to restrict full operation until specific temperatures are reached. Refer to the following chart for temperature restrictions.

<table>
<thead>
<tr>
<th>Sump Oil Temperature</th>
<th>CHECK TRANS. light</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32 deg.C (-25 deg.F) and below</td>
<td>ON</td>
<td>Neutral only</td>
</tr>
<tr>
<td>-31 deg.C (-24 deg.F) to -7 deg.C (+20 deg.F)</td>
<td>OFF</td>
<td>Neutral, First, Second, or Reverse</td>
</tr>
<tr>
<td>-7 deg.C (20 deg.F) and above</td>
<td>OFF</td>
<td>Full operation in all gears</td>
</tr>
</tbody>
</table>

USING THE ENGINE TO SLOW THE VEHICLE

MT 643

To use the engine as a braking force, shift the range selector to the next lower range. If the vehicle is exceeding the maximum speed for a lower gear, use the service brakes to slow the vehicle to an acceptable speed where the transmission may be downshifted safely.

An automatic, compared to a manual, shift transmission has a longer “coast down” time. Until you are accustomed to this characteristic, you may need to manually downshift to reduce speed.

With a little experience in driving the automatic, you will learn to decelerate a bit sooner, or brake until automatic downshifts occur. This will reduce the need for manual downshifting.

MD 3060

To use the engine as a braking force, select the next lower gear. If the vehicle is exceeding the maximum speed for this gear, use the service brakes to slow the vehicle. When a lower speed is reached, the ECU will downshift automatically the transmission. Engine braking provides good speed control for going down grades. When the vehicle is heavily loaded, or the grade is steep, it may be desirable to preselect a lower gear prior to the grade. If engine speed is exceeded, the transmission will upshift automatically to prevent damage to the engine.

TRANSMISSION OIL TEMPERATURE

The transmission oil temperature is indicated in some vehicles by a gauge specifically designed for this purpose and in some vehicles by the engine coolant temperature indicator. Extended operations at low vehicle speeds with the engine at full throttle can cause excessively high oil temperatures in the transmission. These temperatures may tend to overheat the engine cooling system as well as cause possible transmission damage.

If excessive temperature is indicated by the engine coolant temperature gauge. Stop the vehicle and check the cooling system. If the cooling system appears to be functioning properly, shift to neutral and accelerate the engine to 1200-1500 RPM. This should reduce the sump temperature to operating level within two or three minutes. If high temperature persists, stop the engine and have the overheating condition investigated by service personnel.

If excessive temperature is indicated by the transmission oil temperature gauge, check the oil level in transmission. (Refer to the Oil Check Procedure in your Allison Transmission operators manual). Stop the vehicle and shift to neutral. Accelerate the engine to 1200-1500 RPM. The temperature should return to normal within two or three minutes before the vehicle resumes operation. Normal temperature for both on and off-highway operation is 160-200 degrees F. Oil temperature should never exceed 250 degrees F. In units equipped with the MD 3060 transmission, if the sump oil temperature reaches 250 degrees F, the ECU will inhibit operation in the higher gears and turn on the "OIL TEMP" light which is located on the shifter cover.

If high temperature in either engine or transmission persists, stop the engine and have the overheating conditions investigated by maintenance personnel.
CAUTION: The engine should never be operated for more than 30 seconds at full throttle with the transmission in gear and the vehicle not moving. Prolonged operation of this type will cause the transmission oil temperature to become excessively high and will result in severe overheat damage to the transmission.

If the transmission overheats during normal operation, check the oil level in the transmission.

TRANSMISSION BREATHER

The transmission has a self-contained breather near the cooler line ports. Care should be exercised to avoid plugging this breather with paint, undercoating or any other material. The breather provides a passage for normal expansion and contraction of air and fluid within the transmission. A small amount of oil mist comes out of the breather during normal operation. If an excessive amount of oil is found in this area, the cause should be investigated.

TWO SPEED REAR AXLE SHIFT CONTROL

(AAFE ONLY)

The two-speed axle control is mounted on the gear shift lever and is push-pull operated from LO to HI range.

CAUTION: Refer to specific instructions warning of dangers in using the two-speed axle on downgrades.

NOTICE: When parking a vehicle equipped with a two-speed axle, the axle should be shifted into the LOW range with the engine running. Engage the transmission to be sure the axle has completed the shift into LOW range. Some vehicle motion is required to insure the engagement of the axle. Apply the parking brake, place the transmission in neutral and shut off the engine. When leaving the vehicle parked or unattended, the previous instructions must be followed.

Always start the vehicle in motion in LOW range. The axle can be left in any range throughout the transmission gear changes — however, for top performance, the transmission and axle should be shifted in combination to use all the gear ratios available. This combination shifting is called split-shifting. When shifting the axle only, or when split-shifting, certain procedures must be followed. For the shifting sequence, refer to the shifting instruction decal or plate installed in the driver’s area.

There are four basic types of axle shifts:
1. Axle-only upshift
2. Axle-only downshift
3. Split upshift
4. Split downshift
**AXLE-ONLY UPSHIFT**

An Axle-only Upshift is as follows: When the shift is needed, pull the axle shift button up. Release the accelerator pedal to break torque. The axle will shift, and you can resume acceleration. The axle will not shift until the accelerator pedal is released, because torque creates a binding action on the sliding clutch gear.

A short delay is needed to allow the ring gear to slow down and match the speed of the wheels. If the accelerator is depressed too soon, engagement will not take place and a loud grinding noise will be heard. Releasing the accelerator again will allow the gears to synchronize and engagement will take place. The ring gear must slow down by one-third to match wheel speed before the sliding clutch gear can engage the high speed clutch plate.

Smoothing the axle shift: When performing an axle-only upshift in the lower transmission gears, the time required for the ring gear to slow down and match wheel speed is very short. This will result in an abrupt shift that will cause the vehicle to jerk. By using the clutch along with releasing the accelerator pedal, the shift will take place smoothly.

**AXLE-ONLY DOWNSHIFT**

An Axle-Only Downshift is as follows: When the shift is needed, push the axle shift button down and release the accelerator. Accelerate quickly to increase engine and ring gear speed for synchronization and the axle will shift.

A shift from **HIGH** to **LOW** range requires that the ring gear speed up to one-third more than wheel speed.

**WARNING:** A 2-SPEED AXLE SHOULD NEVER BE SHIFTED ON A DOWNGRADE. To downshift the axle from **HIGH** to **LOW** range, either the ring gear has to speed up by one-third, or the wheels have to slow down by one-third to allow synchronization. When you are on a downgrade, the wheels will not slow down, but will tend to speed up. As a result, the ring gear must be accelerated to synchronize speeds. But you are limited in doing so by your engine governed speed and may not be able to reach synchronization to allow the shift to take place. If the shift is not completed, the axle will be in neither **HIGH** nor **LOW** range and all drive line retardation will be lost.
**SPLIT UPSHIFT**

An axle downshift with a transmission upshift is also called a Split Upshift. A Split Upshift is as follows: When the shift is needed, depress the clutch and move gear shift lever to next gear. Keep the clutch down and push the axle shift button down. Release the clutch, press the accelerator and the axle will shift.

Remember that when split shifting, the button stays up in **HIGH** range until **AFTER** any transmission lever movement. When the gear shift lever moves through **NEUTRAL**, the axle must be in **HIGH** range or button up. If the axle is downshifted too soon, the sliding clutch gear will not synchronize and a loud grinding noise will be heard. If this happens, release the clutch pedal and accelerate the engine to allow the sliding clutch gear to synchronize.

**SPLIT DOWNSHIFT**

An axle upshift with a transmission downshift is also called a Split Downshift. A Split Downshift is as follows: When the shift is needed, pull the axle shift button up and depress the clutch. Shift the transmission and release the clutch pedal. The axle will shift. Note here again that the axle was in **HIGH** range as the transmission passed through neutral.

**NOTICE:** When making an axle shift, you must break torque to allow the axle to shift. This is done by releasing the accelerator. When making a split shift, you must have the axle shift button up for **HIGH** range whenever you shift the transmission. NEVER SHIFT THE AXLE WHEN DESCENDING A GRADE.
A coach equipped with a dual air brake system consists of separate complete systems for the front and rear service brakes. A separate reservoir and air gauge is provided for each of these systems. A dual treadle valve is provided for operating the service brake system. In addition to providing excellent service brake performance, this dual brake system is equipped with safety features which allow the driver to use the emergency stopping system through the service brake treadle valve. In the event there is a failure in the air reserve for the front brakes, the rear service brakes can still be applied using the treadle valve, since the two service brake systems operate independently of each other. If there is a failure in the air reserve for the rear service brake system, the front service brakes and the rear spring brakes can be applied through the treadle valve. This allows the operator to use a normal method of braking during an emergency situation. However, in the case of an air reserve failure, the low air pressure warning buzzer will sound and warning light illuminated, giving an indication that trouble is evident and the respective air gauge located on the dash will indicate which system has lost air pressure. The coach must not be operated under those conditions, but repaired before continuing operation.

The rear spring brakes can also be controlled by a dash-mounted valve located on the lower portion of the instrument panel. These spring brakes cannot be fully released until the air reserve pressure is above 60 PSI. These brakes are in the released position when the control valve is pushed in, and in the applied position when the control valve is out. In the event there is a loss in air pressure, the valve will automatically move to the brake applied position and cannot be released until the air reserve pressure has been replenished.

**AIR BRAKE ADJUSTMENT**

**MANUAL SLACK ADJUSTERS**
1. Raise the tire off the floor (NOTE: Install jack under the axle, not under the bumper.)
2. Turn the tire and adjust the brake slack adjuster until the brake shoes are tight against the brake drum.
3. Back off the slack adjuster until wheel rotates freely (very little drag).
4. Apply maximum brake application (100 psi +) and check brake chamber push rod travel. Readjust, if travel is greater than 1 1/4 inches.

**AUTOMATIC SLACK ADJUSTERS**
Refer to Automatic Slack Adjuster Field Maintenance Manual supplied with vendor reference material for adjustment instructions.

**PARKING**
Use the dash mounted valve to apply the rear spring brake when parking the coach. When the parking brake is applied, and the ignition switch is ON, a dash-mounted yellow light labelled PARK will warn the driver that the brake is applied.

**CAUTION: Do not attempt to move bus before spring brakes are released.**

**DRAINING AIR TANKS**
Condensation must be drained from all air tanks daily. To drain tanks properly, leave cocks open until all air escapes and draining stops. NOTE: Daily draining is not required on units equipped with automatic drain valve or an air dryer. The air dryer removes water, oil and other contaminants before they reach the wet tank. The automatic drain valve contains a reservoir to collect condensation in the air brake system which ejects during the on-off cycle of the compressor. On valves with heating elements, freeze up protection is operational when the ignition is turned on.
**SHRADER VALVE**

The coach is equipped with a Schrader valve which is located at the end of the wet tank. It allows the air brake reservoir to be charged with a common type air hose normally used by service stations and garages. Charging this system in this manner is only a means of providing air pressure for the air brake system with an inoperable air compressor or without cranking the engine and should only be used for moving the coach while servicing or in case of emergency.

**MGM SERVICE AND PARKING BRAKE**

**Releasing Spring Brake Manually:** If air pressure fails in the piston chamber, the power spring applies the brakes and, unless pressure can be re-established, the service brakes must be released as follows in order to move the coach.

**WARNING:** Do not release spring brake until coach is secured by wheel chocks or tow vehicle. Failure to do so may result in bodily injury or property damage.

Remove the release stud tool and nut from the carrying pocket on the brake chamber assembly. Remove the access plug from the end of the spring chamber. Insert the release stud through the opening in the chamber and into the spring pressure plate. Turn the release stud one-fourth (1/4) turn to engage the stud tangs with the slot in the pressure plate. Keep the stud engaged and install the nut on the release stud. Tighten the nut until the spring is fully caged and the brakes are released. Do not loosen or remove the release stud and nut unless the brake chamber is completely assembled and is securely clamped. When air pressure is restored, remove the release stud and install in carrying pocket.

**MGM PISTON-TYPE BRAKES**

The release bolt performs two major functions in the brake assembly. In normal operation with bolt fully installed, it serves as a “Drive Mechanism” which transfers force created by the spring directly to the brake actuator push rod. This occurs when parking brake is in use or when loss of air pressure prevents foundation brakes from applying in a normal manner (Figs 1 & 2). When the bolt is removed, it enables release of the vehicle’s foundation brakes enough to allow the vehicle to be moved when the system air pressure is not sufficient to release the spring brakes (Fig 3).

The release bolt does not allow for complete release of slack adjusters when the bolt is removed nor does it allow proper brake (slack adjuster) adjustment when removed. The bolt must be fully installed with full system air pressure applied to the spring brake as shown in figure 1 when the brakes are adjusted.
NOTE: Set up of manual and automatic slack adjusters must be performed with full system air pressure applied to the spring chamber. Also, follow manufacturer’s procedure for adjusting manual and automatic slack adjusters.

WARNING: To safely disassemble the spring chamber, follow the procedures outlined in MGM Service Manual No. 377.

ACTUATOR INSTALLATION & BRAKE ADJUSTMENT

Release bolt and aluminum washer fully installed and tightened to 35-45 lb. ft. Full system air pressure must be applied to the spring chamber.

SPRING BRAKE APPLICATION

Release bolt must be installed and tightened when the vehicle is in operation. NOTE that the release bolt is the drive mechanism for spring brake application.

MANUAL SPRING BRAKE RELEASE

Removal or backing out of the release bolt does not fully release the pushrod/slack adjuster when air pressure is not applied to the spring chamber. Power spring is not “caged” (captured).

HYDRAULIC SYSTEM

The hydraulic system provides power for steering and to the engine fan for cooling the bus. Reservoir fluid level should be checked daily before starting the bus. If additional oil is required, add Texaco Havoline Supreme 10W30 motor oil using a 10 micron filter for the AARE and Dexron for the AAFE.

NOTE: Extra care must be taken to keep all contamination out of hydraulic system.
HYDRAULIC SYSTEM - TROUBLESHOOTING

1. Hydraulic fan will not run.
   A. Check hydraulic oil level in reservoir. (Sight glass)
   B. Check fan motor for free rotation, fan motor should rotate freely. If not rebuild or replace fan motor.

   CAUTION: Engine should be shut off when checking fan motor for free rotation.

   C. Disconnect wires from relief valve solenoid or temperature control switch, and start engine. If fan runs with wire disconnected, the temperature control switch is at fault. Replace switch. If fan does not run with wire disconnected, the solenoid valve may be at fault. Repair or replace solenoid valve. If this does not correct the problem proceed with the following steps.

   D. With hydraulic system at normal operating temperature check pump output pressure to specifications below. Check pressure with wires disconnected from relief valve solenoid, or temperature control switch.

   Note: A pressure tap can be installed at port marked "PR" on the relief valve.

<table>
<thead>
<tr>
<th>ENGINE</th>
<th>PUMP PRESSURE (PSI)</th>
<th>ENGINE RPM</th>
<th>FAN RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9 Cummins</td>
<td>100-300</td>
<td>800</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>2500</td>
<td>1900</td>
</tr>
<tr>
<td>8.3 Cummins</td>
<td>2450</td>
<td>2400</td>
<td>1950</td>
</tr>
<tr>
<td>3116T Cat</td>
<td>100-200</td>
<td>700</td>
<td>400-450</td>
</tr>
<tr>
<td></td>
<td>2800</td>
<td>2600</td>
<td>2350</td>
</tr>
</tbody>
</table>

   E. If pressure is low, adjust the pressure relief adjustment screw by loosening the jam nut and turning the adjustment screw clockwise to increase pressure. If the pressure comes up to specifications, and the fan speed doesn’t, the fan motor has excessive internal leakage and is at fault. Repair or replace fan motor. If specified pressure is obtained, the relief valve is at fault. Repair or replace relief valve.

   F. If after adjusting the pressure relief screw the pressure does not come up to specification, the pump may be at fault, repair or replace pump.

   NOTE: If pump is faulty it is also likely the power steering will show signs of low pressure.

2. Fan motor runs continuously.
   A. Check for 12 volts at the relief valve solenoid. Solenoid will not operate properly with less than 12 volts.
   B. If check shows 12 volts at solenoid, solenoid or solenoid valve may be faulty. Repair or replace solenoid or solenoid valve.
   C. If check shows no voltage at solenoid, check voltage supply at temperature control switch. If check shows 12 volts at temperature control switch, switch is at fault, replace switch. If check shows no voltage, check circuit breaker and all connections, short in circuit or open circuit.

3. Fan motor runs under speed.
   A. Check engine speed at idle and full RPM.
   B. See Steps 1-D, thru 1-F.

4. Shaft seal leak on pump is recognized by excessive addition of hydraulic oil, or in the Cummins 8.3T, and overfilled condition of the engine crankcase. Replace shaft seal or pump. Change engine oil.
5. Remote electric Hayden cooling fan will not run. (Cat 3116 only)
   A. Disconnect wires from temperature control switch and start engine. If fan runs with wires discon-
      nected, the temperature control switch is at fault. Replace switch.
   B. If fan does not run with wires disconnected, check Hayden Fan Relay on Hayden Fan Override
      Relay for voltage, shorts or open circuits.
6. Remote electric Hayden cooling fan runs continuously. (Cat 3116 only)
   A. Check for 12 volts at temperature control switch, fan will not operate properly with less than 12
      volts.
   B. If check shows 12 volts at temperature control switch, check Hayden Fan Relay or Hayden Fan
      Override Relay for voltage, shorts or open circuits

HYDRAULIC CLUTCH CONTROLS &
ADJUSTMENT FOR MANUAL TRANSMISSIONS
(AAFE only)

The system utilizes hydraulic pressure as a means of
transmitting clutch pedal movement to the clutch release
mechanism. It consists of a pedal operated master cylin-
der and a slave cylinder, interconnected with hydraulic
lines. The clutch pedal is connected to the master cylin-
der push rod and the slave cylinder push rod is connected
to the clutch release lever.

When the clutch pedal is depressed, fluid is forced
from the master cylinder into the slave cylinder. The slave
cylinder push rod is forced against and moves the clutch
release lever which pivots and forces the release bearing
against the pressure plate release fingers.

When the clutch pedal is released, the master cylin-
der return spring and the release lever retracting spring
forces the fluid from the slave cylinder back to the master
cylinder.

The fluid used in the system is the same as used in
hydraulic brake systems. A Bleed valve is installed on the
slave cylinder and the procedure for bleeding is the same
as for hydraulic brakes. The fluid level in the master cylinder should be maintained 1/2 inch below the top of
the reservoir. Access to the clutch master cylinder is available by removing the plug in the LH front side of the
drivers seat base. Two adjustments are required, to obtain proper clutch operations, on hydraulic clutch con-
trols. (1) Master cylinder push rod. (2) Slave cylinder push rod.

Prior to making any adjustments, be sure that the system is free of air and that the master cylinder fluid
is at the specified level.

The purpose of the master cylinder push rod adjustment is to insure the piston is resting against the
piston stop when clutch is engaged. Adjust master cylinder push rod for "0 to 1/8 inch" free pedal travel
when the pistol is in the fully returned position and the clutch pedal is in its normal at rest position. If the
push rod is adjusted too long (no free travel), the piston may never return far enough to clear the compensat-
ing port in the cylinder. This seals the hydraulic line and the result is the same as riding the clutch all the time
(excessive clutch wear). If the push rod is adjusted too short (excessive free travel) the pedal must be de-
pressed too far before clutch disengages and can result in rough shifting of the transmission and excessive
clutch wear.
The purpose of the slave cylinder push rod adjustment is to provide adequate travel of the clutch release bearing to insure; (1) Complete clutch disengagement when the clutch pedal is fully depressed. (2) Complete clutch engagement and clutch release bearing clearance when the clutch pedal is fully released.

The clutch slave cylinder push rod illustration below shows the adjustment procedures for the type of adjusting mechanism used with slave cylinders installed on Forward Control Coaches.

**CLUTCH SLAVE CYLINDER PUSH ROD ADJUSTMENT**

**NOTE:** Clutch master cylinder adjustment is not normally required before clutch slave cylinder is adjusted, however; checking master cylinder adjustment is advised.

1. Disconnect clutch release lever/fork retracting spring (omitted on diagram).
2. Bottom slave cylinder push rod in direction indicated by arrow.
3. Pull clutch release lever/fork in direction indicated by arrow until clutch release bearing just contacts pressure plate release levers.
5. Clearance can be increased or decreased by using adjusting nut and wedge or spherical (threaded) nut.
6. Free pedal travel should be approximately 1 inch.

NOTE: Some installations use the jam nut, adjusting nut, and wedge as illustrated above. Other installations will include only the jam nut and spherical (threaded) nut.

**RADIATOR FANS**

**SERVICING VEHICLES WITH FAN CLUTCHES**

CAUTION: Cooling fan operation is controlled electrically by a thermostat which senses engine coolant temperature. Any time the engine is running, the fan may engage and start to run without warning. The engine must be shut off and the fan stopped before servicing.

**RADIATOR COOLING FAN & GOVERNED SPEED**

CAUTION: Increasing the governed speed of the engine or the fan speed (by changing the fan drive ratio) may cause the engine’s radiator cooling fan to fatigue and then suddenly break apart while rotating, possibly causing personal injury to anyone standing nearby and/or equipment damage.
**SERVICING VEHICLES WITH HYDRAULIC DRIVEN FANS**

**CAUTION:** Cooling fan is driven by hydraulic pressure and flow which is controlled electrically by a thermostat which senses engine coolant temperature. Any time the engine is running the fan may engage and start to run without warning. Also, on hydraulically driven fans, the fan may start and run for several seconds when the engine is shut off or if electrical power is interrupted. The engine must be shut off and the fan stopped before servicing.

**CAUTION:** When inspecting or servicing engine or other components in engine compartment the engine control switch must be in the OFF or REAR position to prevent starting of the engine from the driver's area.

---

**SHUTTERS**

The optional radiator shutters on the AARE assist in maintaining a constant engine temperature by limiting the air flow through the radiator. The shutter blades are powered by air pressure from the brake system on the vehicle. The shutters are controlled automatically by a 185°F Alarmstat which is located in the upper radiator hose and an electric solenoid in the air line controlling the shutters. The shutters require no lubrication but must be cleaned as required or at least every 2 years or 24,000 miles, whichever occurs first. See the shutters installation diagrams provided with vendor maintenance information for plumbing, wiring and parts requirements.

---

**COOLING SYSTEM**

**CAUTION:** Use extreme care when removing a radiator pressure-control cap. The sudden release of pressure from a heated cooling system can result in a loss of coolant and possible personal injury (scalding) from the hot liquid or steam.

Coolant should be drained and replaced every 2 years. See individual Quick Reference Maintenance Chart for complete guidelines for each engine. Check engine operations and maintenance manuals for recommendations on use of coolant additives. Refer to HEATER BLEEDING INSTRUCTIONS to insure heating system is completely filled any time coolant is drained.

On vehicles used in stop-and-go service, such as the Blue Bird All American, engine hoses deteriorate more rapidly; therefore it is important to inspect all such hoses frequently. Hoses which are worn, chafed, hardened or cracked must be replaced before a leak develops. On an age hardened hose, retightening a worm screw clamp will not stop connection leaks, and further indicates that the hose needs replacement. It is also important not to overtighten clamps as this can damage the hose, or distort the tubing connector. When replacing a hose, the clamp should be torqued to 45 inch lbs. When checking a hose clamp, clamps should be torqued to a minimum of 34 inch lbs.

---

**ALL AMERICAN PITMAN ARM**

If it becomes necessary to remove the pitman arm from the steering gear, it is possible with the gear still on the vehicle. The pitman arm may be removed as follows:

1. Remove the front of the drag rod from the pitman arm.
2. Rotate the steering gear so that the pitman arm nut and bolt are accessible with a socket and extension for a ratchet wrench.
3. After removing the pitman arm nut and bolt, the pitman arm boss must be spread in order to loosen the pitman arm for removal from the shaft. Spreading the boss may be accomplished by using the correct size Allen wrench, a chisel or a pitman arm spreader. If the pitman arm cannot be removed from underneath, there is a small hole in the floor that may be used for access, by removing the four screws in the access plate.

4. When the boss is spread, slide the pitman arm off the steering gear shaft.

If the same pitman arm is to be reinstalled onto the steering gear, clean the end of the steering gear shaft and the outside of the pitman arm so that the alignment marks on each are visible.

The pitman arm may be installed as follows:
1. Rotate the output shaft on the steering gear so that the mark on the output shaft is perpendicular to the input shaft.
2. Install the pitman arm on the steering gear output shaft (2) splines to the rear from parallel to the input shaft. Align the marks or count the splines to insure the correct arm position.
3. Install the pitman arm clamp bolt, nut and hardened flatwasher on the nut side. Be sure there is no spreading wedge left in the pitman arm boss before torquing the pitman arm clamp bolt to 250-282 ft. lbs.
4. Reinstall the drag rod onto the pitman arm. Torque drag rod end nut to 145 +/- 25 ft. lbs. Line up slot in nut with hole in drag rod end stud and install cotter pin.

FRONT AXLE STOP AND STEERING GEAR AUTOMATIC POPPET ADJUSTMENTS

To adjust the automatic poppets and axle stops, do the following.
1. Axle stops should be set so that a minimum of 2 1/2 turns of the steering wheel can be achieved in both directions.
2. Jack up vehicle under the front axle until front wheels clear the floor. **NOTE:** Turn plates may be used in lieu of jacking vehicle.
3. Position front wheels straight ahead. Check by measuring from the frame rail to the tire tread on the front and rear of the tire.
4. Mark the steering wheel with tape.
5. Rotate the wheel to the right and count the turns of the steering wheel. Return wheels to straight ahead. Rotate the wheel to the left and count the turns of the steering wheel. Turns do not have to be equal, but a minimum of 2 1/2 turns in both directions is acceptable.
6. If the steering wheel turn is less than minimum, do the following:
   a. Screw the axle stops in 1/8”.
   b. Repeat steps 3, 4 and 5.

**NOTE:** The turning radius may be increased at any time by readjusting the axle stops and rotating steering first clockwise then counter clockwise.
If it becomes necessary to shorten the turning radius, the steering gear poppets must be adjusted manually by doing the following. Read the section on special poppet valve manual readjustment in the TAS65 Service Manual before proceeding.

1. Set axle stops for correct turn.
2. Turn new adjusting poppet screw #1469261 into jam nut until flush with end of screw.
3. With bus unloaded and engine off and axle straight ahead, remove and discard fixed poppet screw at bottom of steering gear. (NOTE: Timing marks on end of sector shaft and housing are to be aligned)
4. Install new adjusting poppet screw #1469261 and torque jam nut to 33-37 ft. lbs.
5. Refill power steering reservoir.
6. With engine at idle, turn steering wheel clockwise until axle stop is contacted and torque steering wheel to rim pull of 48 ft. lbs.
7. Loosen jam nut on adjusting screw and back out screw 1” to 1 1/16” beyond the jam nut and retorque the jam nut to 33-37 ft. lbs.
8. With engine at idle, turn steering wheel in opposite direction (counterclockwise) until axle bottoms on axle stop and torque steering wheel to a rim pull of 30 ft. lbs.
9. Turn steering wheel clockwise to the axle stop contact position. With steering wheel being held in this position, loosen the jam nut on the adjusting screw one turn. Hold the nut from turning and turn adjusting screw in to a torque of 10-20 in. lbs. increase, and back out adjusting screw (4) turns, not to exceed 1 1/16” beyond the jam nut and release the steering wheel. Retorque the jam nut to 33-37 ft. lbs.

CAUTION: Do not exceed the 20 in. lbs. torque in procedure #9. If torque is exceeded the complete procedure must be repeated.

CAUTION: Relief valve pressure must not be maintained more than (5) seconds during operation in step #9 or pump damage could occur.

10. The manual poppet adjustment is now complete.

REAR AXLE VENT

All drive axles have a vent on the top of the axle housing that allows the axle to breathe as the axle temperature changes. The vent must remain open to prevent seal failures. Note that it is normal for the vent to ooze some lubricant.

WHEELBEARING ADJUSTMENT

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>AXLE TYPE</th>
<th>Initial Adjusting Nut Torque</th>
<th>Final Adjusting Nut Torque</th>
<th>Acceptable End Play Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front (Non-Drive)</td>
<td>100 ft. lbs. back off 1 turn</td>
<td>20 ft. lbs. back off 1/3 turn</td>
<td>.001&quot; - .005&quot;</td>
</tr>
<tr>
<td>Drive Axles</td>
<td>100 ft. lbs. back off 1 turn</td>
<td>50 ft. lbs. back off 1/3 turn</td>
<td>.001&quot; - .010&quot;</td>
</tr>
<tr>
<td>Trailer Axles</td>
<td>100 ft. lbs. back off 1 turn</td>
<td>50 ft. lbs. back off 1/4 turn</td>
<td>.001&quot; - .010&quot;</td>
</tr>
</tbody>
</table>
## JAM NUT TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>AXLE TYPE</th>
<th>Nut Size / Design</th>
<th>Torque Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front (Non-Drive)</td>
<td>Less than 2 5/8”</td>
<td>200 - 300 ft. lbs.</td>
</tr>
<tr>
<td></td>
<td>2 5/8” and over</td>
<td>250 - 400 ft. lbs.</td>
</tr>
<tr>
<td>Drive Axles</td>
<td>Less than 2 5/8”</td>
<td>200 - 300 ft. lbs.</td>
</tr>
<tr>
<td></td>
<td>No Lockwasher Used</td>
<td>2 5/8” and over</td>
</tr>
<tr>
<td>Drive Axles</td>
<td>Less than 2 5/8”</td>
<td>100 - 150 ft. lbs.</td>
</tr>
<tr>
<td></td>
<td>Bending Lockwasher Used</td>
<td>2 5/8” and over</td>
</tr>
</tbody>
</table>

## RIDEWELL VEHICLE AIR SUSPENSION

The Ridewell Air suspension uses pressurized air, drawn from the conventional vehicle air system, to form the load carrying, shock absorbing springs. Automatic height control valves regulate the air pressure required for varying loads, and maintains a constant vehicle ride height at all times. Its basic characteristic is its ability to provide a cushioned ride through the light to loaded range.

The Ridewell Air Suspension differs greatly from conventional leaf spring suspensions. This section is presented to provide an understanding of its operation, function, and characteristics, and to assist in applying preventive maintenance and corrective service, when necessary.

The Ridewell Air Suspension is designed and engineered to provide continuing trouble-free operation, requiring the minimum of service and maintenance.

### PRE-OPERATIONAL CHECK LIST

Before the vehicle is placed into service in an over-the-road operation, the following items should be inspected:

1. With the vehicle engine running to maintain air pressure in excess of 100 PSI and parked on a level floor, check-
   a. All air springs should be of equal firmness.
   b. Air Spring Height should be checked.
      Front Air Spring Height - 6 3/4”
      Rear Air Spring Height - 8 5/16”
   c. The air springs must have a clearance of at least 2” around the rubber air springs.
2. With the engine shut off, check suspension air system for leaks.
3. Check all nuts and bolts for tightness per following torque specifications.

### OPERATING INSTRUCTIONS

The air suspension is controlled by automatic valves that maintain a constant vehicle height by pressurizing or exhausting air in the springs as needed to support the load being carried. The vehicle air pressure must be built up and maintained in excess of 100 PSI to inflate the air springs before operating.

Mechanical stability through the suspension system allows careful operation of the loaded vehicle with pressurized air springs on one side only without excessive lean. To deflate and/or cut off pressure to damaged air springs, disconnect the height control valve actuating levers from their link assemblies and rotate to vertical down position.
IMPORTANT NOTE: Most trouble or failures do not put the suspension out of operation. Road repairs are not necessary for anything less than a major breakdown. Temporary steps can be taken to continue careful operation for many miles until such time it is convenient to make repairs. Safe air brake pressure of 65 PSI is automatically maintained by a brake protection valve in the event of an air loss due to a failure in the suspension air system. Rubber bumpers inside the air springs carry the loaded vehicle, should all air springs go flat.

INSPECTION CHECK LIST

FIRST 1,000 AND 3,000 MILES (Physical Inspection)
- Check all nuts, bolts, and air connections for tightness.
- Check all air springs for equally inflated firmness.
- Check ride height dimension.

DAILY (Visual Inspection)
- Check air springs for inflation.
- Check for loose or broken parts.

EVERY 30 DAYS (Visual Inspection)
- Check all nuts, bolts and air connections for tightness.
- Check air springs for equally inflated firmness.
- Check for broken and abnormally worn parts.
- Check for wear from insufficient clearance around air springs, shock absorbers, air brake chambers and tires.

EVERY 90 DAYS (Physical Inspection)
- Thoroughly check all items listed for 30-day inspection.
- Lift rear of vehicle until suspension is fully extended. Check the following:
  a. Air springs should be completely deflated.
  b. Inspect the air spring for wear at the contact area to the pedestal.
  c. Clean pedestal thoroughly with wire brush.
  d. Check shock absorbers for oil leakage and worn rubber bushings.
  e. Repeat procedure for front of vehicle.
- Remove blocks to let vehicle down. All air springs should equally inflate if height control valves function properly and air reservoir pressure is maintained.

SERVICE NOTES

TORQUE SPECIFICATIONS (Lubricated Threads)

<table>
<thead>
<tr>
<th>BOLT OR STUD SIZE</th>
<th>*RECOMMENDED TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4” at Leveling Valves</td>
<td>5.5 Ft. Lbs.</td>
</tr>
<tr>
<td>1/2” at Air Spring</td>
<td>25 Ft. Lbs.</td>
</tr>
<tr>
<td>3/4” at Air Spring</td>
<td>25 Ft. Lbs.</td>
</tr>
<tr>
<td>7/8” at Tract Bar</td>
<td>400 Ft. Lbs.</td>
</tr>
<tr>
<td>7/8” at Rear Axle “U” Bolts</td>
<td>350 Ft. Lbs.</td>
</tr>
<tr>
<td>1 1/4” at Ft. Torque Beams</td>
<td>750 Ft. Lbs.</td>
</tr>
<tr>
<td>1 1/2” at Rear Torque Beams</td>
<td>100 Ft. Lbs.</td>
</tr>
</tbody>
</table>

*All Torque Valve +/- 10%
BRASS AIR FITTING CONNECTIONS

<table>
<thead>
<tr>
<th>BRASS PIPE FITTING - SIZE</th>
<th>*RECOMMENDED TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8 N.P.T.</td>
<td>4 Ft. Lbs.</td>
</tr>
<tr>
<td>1/4 N.P.T.</td>
<td>10 Ft. Lbs.</td>
</tr>
</tbody>
</table>

NOTE: Use Loctite or equivalent sealer at brass pipe fitting connections. Do not allow sealer to enter any valve body or connection.

LUBRICATION
Your Ridewell Suspension requires no lubrication at any time. Lubricate axles according to axle manufacturer’s recommendations.

CAUTION: Because the air suspension is controlled by sensitive valves, the air supply must be kept reasonably free of foreign matter, moisture, and oil. Air tanks should be drained regularly and air compressor rings maintained.

HEIGHT CONTROL VALVE ADJUSTMENT
Adjust Height Control Valves for proper frame height by setting one valve at a time as follows:
1. Position vehicle on level floor and air compressor running to maintain air pressure while adjusting valves.
2. Disconnect both Height Control Valve Linkage Assemblies from the External Actuating Levers.
3. Move both Actuating Levers to a vertical down position to exhaust all air from the Air Springs.
4. Connect one Valve Actuating Lever only with its respective Link Assembly. Let Air Springs that are controlled by this Valve fill until Valve shuts off.
5. Measure air spring height in the same area that Valve and Link Assembly are located. Adjust Valve by loosening adjustment lock nut and carefully move nylon block until proper height dimension is reached. Tighten Adjustment Lock Nut.
   NOTE: It will require from (2) to (6) seconds after moving nylon block before air starts to flow through Valve due to a built-in time delay.
6. Disconnect Link Assembly again and let Springs deflate about half way. Reconnect Link Assembly to inflate springs. When Valve shuts off, check height dimension again.
7. If necessary, repeat Steps 5 and 6 until proper air spring height is accomplished.
8. Disconnect this properly set Height Control Valve and move Actuating Lever to a vertical down position to deflate springs.
9. Repeat Steps 4 through 8 with other Height Control Valve.
10. Connect both valve actuating levers with their respective link assemblies at the same time. When springs are fully inflated and valve shut off, check height dimension again. It should now be proper and both valves synchronized.
   NOTE: If it is impossible to obtain proper valve adjustment with the foregoing procedure, check for proper height control valve installation as shown in drawings pertaining to the vehicle specifications.

AIR SPRING HEIGHTS
Front - 6 3/4"    Rear - 8 5/16"
**TROUBLE-SHOOTING**

**IMPORTANT** - Most trouble or failures do not put the suspension out of operation. Road repairs are not necessary for anything less than a major breakdown. Temporary steps can be taken to continue careful operation for many miles until such time it is convenient to make repairs.

Broken or worn shock absorbers, rubber bushings, or other components should be replaced as soon as conveniently possible.

<table>
<thead>
<tr>
<th>POSSIBLE CAUSE</th>
<th>POSSIBLE REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>All Air Springs Flat</strong></td>
<td>Insufficient air pressure.</td>
</tr>
<tr>
<td></td>
<td>Leak or broken line in air system</td>
</tr>
<tr>
<td></td>
<td>Air Filter Clogged</td>
</tr>
<tr>
<td></td>
<td>Dump solenoid burned out.</td>
</tr>
<tr>
<td></td>
<td>Build up air pressure.</td>
</tr>
<tr>
<td></td>
<td>Locate and repair.</td>
</tr>
<tr>
<td></td>
<td>Replace</td>
</tr>
<tr>
<td><strong>Suspension Deflates Rapidly When Parked</strong></td>
<td>Leak in Air Suspension System.</td>
</tr>
<tr>
<td></td>
<td>Leaking Air Spring.</td>
</tr>
<tr>
<td></td>
<td>Locate and repair.</td>
</tr>
<tr>
<td></td>
<td>Replace</td>
</tr>
<tr>
<td></td>
<td>Check for puncture or wear;</td>
</tr>
<tr>
<td></td>
<td>repair or replace</td>
</tr>
<tr>
<td><strong>Air Spring Blown Out</strong></td>
<td>Punctured or cut.</td>
</tr>
<tr>
<td></td>
<td>Suspension operated without air</td>
</tr>
<tr>
<td></td>
<td>pressure in springs.</td>
</tr>
<tr>
<td></td>
<td>Continued or repeated over-extension of Air Spring.</td>
</tr>
<tr>
<td></td>
<td>Replace</td>
</tr>
<tr>
<td></td>
<td>Check items listed</td>
</tr>
<tr>
<td></td>
<td>under “All Air Springs Flat.”</td>
</tr>
<tr>
<td><strong>Vehicle Rides Too High or Low</strong></td>
<td>Improperly adjusted</td>
</tr>
<tr>
<td><strong>Slow Recovery of Dump System</strong></td>
<td>Height Control Valves.</td>
</tr>
<tr>
<td></td>
<td>Air Filter Clogged</td>
</tr>
<tr>
<td></td>
<td>Replace</td>
</tr>
</tbody>
</table>

![Piping Diagram of Leveling Valve]

*EXHAUST PIPE IS ALWAYS AT THE TOP OF THE LEVELING VALVE*

*PLUMBING FROM LEVELING VALVE TO AIR SPRING ALWAYS COMES FROM CENTER OF VALVE*

*PLUMBING FROM AIR RESERVOIR TO LEVELING VALVE ALWAYS CONNECTS AT BOTTOM OF VALVE*
SCHEDULED MAINTENANCE

MONTHLY OR 1,000 MILES
- Grease safety barrier latch on Braun wheelchair lift.
- Lubricate roof hatch weatherseals & lock mechanisms.
- Inspect all emergency equipment mounting fasteners.
- Lubricate window latches and slides.
- Lubricate hinge pin on entrance doors.
- Lubricate pivot points on outward opening door.
- Check/adjust roller bracket and control rod bracket on jackknife door.
- Check/adjust air pressure in power jackknife door.
- Inspect outer fasteners and lubricate electric stop arms.
- Check air filter.
- Lubricate rear emergency door positive hold open hinge.

MONTHLY OR 3,000 MILES
- Check fuel system (Drain fuel and contaminants, if required).
- Check battery water level.
- Inspect brake chambers.
- Inspect manual transmission fluid level.
- Inspect clutch master cylinder and slave cylinder.
- Inspect Ridewell air suspension.
- Adjust shoe-type brakes.

3 MONTHS OR 3,000 MILES
- Inspect fire extinguisher to see if fully charged.
- Check first aid kits to see if fully equipped.
- Oil all hinges and window latches for ease of operation.
- Lubricate all window channels with silicone or graphite.
- There is one drain hole in each floor section under windows. Be sure hole is clear of debris so any water may escape.
- Clean all rubber door seals and lubricate with rubber lubricant.
- All rear and side emergency door latch slide bars to be lubricated with light grease to reduce friction.
- Tighten all tie down bolts to 37-41 foot pounds torque at 1,000 miles, 2,000 miles, and quarterly thereafter.
- Change main heater air filter (depending on operating conditions).
- Check seat cushion clamps.
- Inspect mounting bolts on body tie down.
- Inspect mounting fasteners and upholstery on seats.
- Lubricate bridge plate hinge and pivot on Collins wheelchair lift.
- Clean and lubricate fold cam slot, platform cam slots and handrail V-block on Collins wheelchair lift.
- Check fluid level in Collins wheelchair lift.
- Lubricate hinge and latch mechanisms on access doors.
- Check internal fasteners on electric stop arms.
- Inspect Bendix air dryer for excessive reservoir moisture.
- Clean and lube treadle valve mechanical actuating parts.
6 MONTHS OR 6,000 MILES
- Check lubricant level in rear axle.
- Inspect rear axle vent.
- Check power steering fluid level.
- Lubricate steering drag rod.
- Check single and double check valves.
- Lubricate spring pin.
- Inspect alternator.
- Clean battery posts.
- Disassemble and clean the air compressor governor and repair, as required.
- Lubricate entrance door vandal lock.
- Check/adjust emergency door vandal lock.
- Lubricate lock mechanism and door hinge on emergency door.
- Inspect destination sign for proper operation.
- Lubricate hinges and roller gears on destination signs.
- Check/adjust curtain on destination signs.
- Lubricate all working part joints on driver’s seat using lithium-based grease (aerosol).
- Check/adjust door control rod on manual entrance doors.
- Replace fuel filter and fuel inlet screen.
- Lubricate sliding bolt mechanism on vandal lock.
- Inspect drive shaft.
- Lubricate universal joint and slip joint.
- Lubricate clutch release bearing.
- Change engine oil and oil filter.
- Change Perry water filter.
- Inspect fuel cap, tank, fuel lines and fuel tank valve.
- Inspect and check radiator and shutters.
- Lubricate brake camshaft, king pins, tie rod ends and slack adjusters.
- Inspect coolant hoses.
- Inspect accelerator system.
- Check fuel water separator and drain as required.
- Change engine fuel filter.

12 MONTHS OR 12,000 MILES
- Complete Quarterly Maintenance Check List.
- Remove all seat cushions, thoroughly clean with upholstery cleaner and reinstall on a rotating basis.
- Adjust door control rod and closing mechanism to entrance doors.
- Bleed all air from heaters.
- Tighten all heater hose clamps.
- Check cylinder chains, hoses and wires on the Braun Wheelchair lift.
- Check heater hoses, motor wheels and fans on heaters.
- Clean heater core.
- Tighten heater hose clamps. (Tighten after first 1000 miles)
- Inspect power steering pump.
- Inspect steering gear.
- Lubricate steering column.
- Check front and rear suspension U-bolt torque.
- Check spring pin lock bolt.
- Check spring pin and bushing wear.
- Inspect suspension system and components.
• Inspect shocks.
• Inspect suspension hanger bracket to frame fastener torque.
• Inspect quick starting aid.
• Inspect engine block heaters.
• Pressure test engine cooling system.
• Check radiator fan and motor.
• Inspect electrical fuel transfer valves.
• Replace engine air filter.

12 MONTHS OR 24,000 MILES
• Check air tank pop-off valves.
• Change automatic transmission fluid.
• Change internal and external automatic transmission filter.
• Inspect automatic transmission vent.
• Change power steering reservoir filter.
• Change lubricant in rear axle.
• Change manual transmission fluid.
• Clean radiator.
• Clean shutters

24 MONTHS OR 24,000 MILES
• Change thermostat.
• Clean relay valves, spring brake valves, parking brake valves, and quick release valves.
• Clean pressure protection valves.
• Inspect and clean Stratoflex air dryer.
• Clean and flush cooling system.
• Inspect turbocharger.
• Steam clean engine.

These check lists are suggested. They do not replace or supersede local or state required driver inspection procedure.
# Quick Reference Maintenance Charts

## Cummins Engine Maintenance Chart

<table>
<thead>
<tr>
<th>Operation</th>
<th>Service Intervals *</th>
<th>Months / Miles Whichever Occurs First</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check Engine Oil Level</td>
<td>Daily</td>
<td></td>
</tr>
<tr>
<td>Change Engine Oil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change Engine Oil Filter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean Radiator</td>
<td>As required</td>
<td></td>
</tr>
<tr>
<td>Clean Shutters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspect Hoses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check Low Coolant Sensor Light</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure Test System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change Thermostat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check Coolant Level</td>
<td>When refueling or daily</td>
<td></td>
</tr>
<tr>
<td>Change Coolant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change Perry Water Filter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check Radiator Fan Motor (AARE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check Fuel Cap, Tank &amp; Lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change Engine Fuel Filter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check Fuel Water Separator</td>
<td>Weekly</td>
<td></td>
</tr>
<tr>
<td>Check Fuel</td>
<td>Daily</td>
<td></td>
</tr>
<tr>
<td>Drain Fuel and Contaminants</td>
<td>As required</td>
<td></td>
</tr>
<tr>
<td>Check Fuel Tank Vents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check Air Filter Assembly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replace Air Filter Assembly</td>
<td>As required</td>
<td></td>
</tr>
<tr>
<td>Emission Controls</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### General Instructions

- **Check Engine Oil Level**: Daily. See Cummins Book. Drain oil when hot while contaminants are in suspension.
- **Change Engine Oil**: Follow engine manufacturers recommendation for SAE grade.
- **Change Engine Oil Filter**: Follow engine manufacturers recommendation. Service #LF734
- **Clean Radiator**: As required. See Cummins Book. Clean exterior of radiator. Radiator cap BB #1325430
- **Clean Shutter**: Do not lubricate. See page 79.
- **Inspect Hoses**: Follow engine manufacturers recommendation. Service #LF734
- **Check Low Coolant Sensor Light**: Disconnect surge tank sensor wire.
- **Pressure Test System**: Pressure test system to 7 psi, including radiator cap.
- **Check Thermostat**: As required.
- **Check Coolant Level**: When refueling or daily. See Cummins Book. Check sight glass on deaeration tank, or maintain level within 1/2" below bottom of filling pipe on AARE. Check see through deaeration tank on AAFE. Part #1391705 low silicate antifreeze, Ethylene glycol base 50 / 50 mixture.
- **Change Coolant**: See Cummins Book.
- **Change Perry Water Filter**: Filter WF-2073
- **Check Radiator Fan Motor (AARE)**: Check for leakage around shaft. If leakage is evident (fluid oozing out) correct immediately.
- **Check Fuel Cap, Tank & Lines**: Inspect for leaks and repair as required.
- **Change Engine Fuel Filter**: Remove filters and clean the gasket surface of filter head. Replace O-rings. Fill new filters and lube O-ring seals. Located on RH side of engine. FS-1226 Primary, FF5052 Secondary
- **Check Fuel Water Separator**: Drain water as required.
- **Check Fuel**: Daily. See Cummins Book. Avoid using contaminated fuel. No. 2-D recommended fuel blended for expected temperature range.
- **Drain Fuel and Contaminants**: As required. See Cummins Book. Remove fuel tank sump drain plug to drain contaminants.
- **Check Fuel Tank Vents**: Fuel tank vent on top of fuel tank must remain clear to work properly.
- **Check Air Filter Assembly**: See Cummins Book. Check air cleaner more often under dusty conditions. Check air cleaner service indicator (AAFE).
- **Replace Air Filter Assembly**: BB #4292413 (AAFE) #2106722 (AARE) Vendor #C49261
- **Emission Controls**: No periodic maintenance required.
## JOHN DEERE 8.1 CNG ENGINE MAINTENANCE CHART

<table>
<thead>
<tr>
<th>Operation</th>
<th>Service Intervals *</th>
<th>Months / Miles Whichever Occurs First</th>
<th>General Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check Engine Oil Level</td>
<td>Daily</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book.</td>
</tr>
<tr>
<td>Check Coolant Level</td>
<td>Daily</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book. Check see through tank above radiator on AARE. Check sight glass on top front of radiator on AAFE.</td>
</tr>
<tr>
<td>Check Air Cleaner Restriction Indicator</td>
<td>Daily</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book.</td>
</tr>
<tr>
<td>Clean External Cooling System Components</td>
<td>Daily</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book. Clean exterior of radiator.</td>
</tr>
<tr>
<td>Change Engine Oil</td>
<td>X</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book. Change after first 2,500 miles of operation.</td>
</tr>
<tr>
<td>Change Engine Oil Filter</td>
<td>X</td>
<td>1 / 3,000</td>
<td>Drain oil when hot while contaminants are still in suspension. Follow engine manufacturers recommendation for SAE grade.</td>
</tr>
<tr>
<td>Check Belt Tensioner &amp; Belt Wear</td>
<td>X</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book. Replace belt if necessary.</td>
</tr>
<tr>
<td>Check Water Pump Weep Hole Foam Filter</td>
<td>X</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book. Inspect for oil or coolant leakage. Replace complete water pump assembly if leakage is detected.</td>
</tr>
<tr>
<td>Inspect Natural Gas Filter Element</td>
<td>X</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book. Filter should be white and dry. If not, replace. Replace spring washer if damaged.</td>
</tr>
<tr>
<td>Check Air Intake Hoses, Connections, &amp; System</td>
<td>X</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book. Tighten all clamps securely.</td>
</tr>
<tr>
<td>Check Cooling System Hoses &amp; Connections</td>
<td>X</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book.</td>
</tr>
<tr>
<td>Check Coolant Solution</td>
<td>X</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book. Add SCAs as needed.</td>
</tr>
<tr>
<td>Clean Crankcase Vent Tube</td>
<td>X</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book.</td>
</tr>
<tr>
<td>Replace Natural Gas Filter Elem.</td>
<td>X</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book.</td>
</tr>
<tr>
<td>Check Crankcase Vibration Damper</td>
<td>X</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book. Grasp with both hands and attempt to turn in both directions. If rotation is felt, damper should be replaced.</td>
</tr>
<tr>
<td>Inspect Natural Gas Lines</td>
<td>X</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book. Inspect for loose fittings, leaks, cuts, abrasions, etc.</td>
</tr>
<tr>
<td>Pressure Test Cooling System, Radiator, &amp; Cap</td>
<td>X</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book. Pressure test system to 10 psi, including radiator cap.</td>
</tr>
<tr>
<td>Flush Cooling System</td>
<td>X</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book.</td>
</tr>
<tr>
<td>Replace Spark Plugs</td>
<td>X</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book. Adjust gap to .015”. Tighten plugs to 28 lb-ft.</td>
</tr>
<tr>
<td>Inspect Air Compressor</td>
<td>X</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book. Clean components fouled with carbon.</td>
</tr>
<tr>
<td>Check &amp; Adjust Engine Valve Clearance</td>
<td>X</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book.</td>
</tr>
<tr>
<td>Replace Belts</td>
<td>As Required</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book.</td>
</tr>
<tr>
<td>Inspect &amp; Service Air Cleaner Elements</td>
<td>As Required</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book. Replace primary element when air restriction indicator shows a vacuum of (12in.-H20), or if element is damaged or torn.</td>
</tr>
<tr>
<td>Add Coolant</td>
<td>As Required</td>
<td>1 / 3,000</td>
<td>See PowerTech 6081 CNG Engine Book.</td>
</tr>
</tbody>
</table>

**NOTE:**

If the batteries have been disconnected on a unit equipped with the John Deere 8.1 CNG engine for service reasons and then reconnected the engine will idle rough for up to five minutes after restart until the Electronic Control Module is readjusted automatically. Only idle is affected.
## SUSPENSION MAINTENANCE CHART

<table>
<thead>
<tr>
<th>Operation</th>
<th>Service Intervals *</th>
<th>Months / Miles Whichever Occurs First</th>
<th>General Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 / 3,000</td>
<td>3 / 3,000</td>
<td>6 / 6,000</td>
</tr>
<tr>
<td>SPRING SUSPENSION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check Front U-bolt Torque</td>
<td>●</td>
<td>Check before vehicle is placed in service &amp; at regular intervals. Torque to 325 ft. lbs.</td>
<td></td>
</tr>
<tr>
<td>Check Rear U-bolt Torque</td>
<td>●</td>
<td>Check before vehicle is placed in service &amp; at regular intervals. Torque to 450 ft. lbs.</td>
<td></td>
</tr>
<tr>
<td>Check Spring Pin Lock Bolt</td>
<td>●</td>
<td>Bolt, hardened flatwasher and locknut must be in position.</td>
<td></td>
</tr>
<tr>
<td>Check Spring Pin and Bushing Wear</td>
<td>●</td>
<td>Inspect by using a pry bar to apply pressure to the spring pin and bushing.</td>
<td></td>
</tr>
<tr>
<td>Lubricate Spring Pin</td>
<td>●</td>
<td>12 Fittings. Lubricate at first 1,000 miles and then at regular intervals. Use NLGI grade No. 2 Grease. See key No.1 page 89.</td>
<td></td>
</tr>
<tr>
<td>Inspect Suspension</td>
<td>●</td>
<td>Inspect all spring components for damage or misalignment.</td>
<td></td>
</tr>
<tr>
<td>Inspect Shocks</td>
<td>●</td>
<td>Inspect for leaks.</td>
<td></td>
</tr>
<tr>
<td>MORRYDE SUSPENSION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspect U-bolt Torque</td>
<td>●</td>
<td>Check before vehicle is placed in service &amp; at regular intervals. Torque to 450 ft. lbs.</td>
<td></td>
</tr>
<tr>
<td>Inspect Hanger Bracket to Frame Fastener Torque</td>
<td>●</td>
<td>Torque to 85 ft. lbs.</td>
<td></td>
</tr>
<tr>
<td>Inspect Suspension Components</td>
<td>●</td>
<td>Inspect all suspension components including sway bar bushings, rubber spring assemblies, shocks, frame brackets and frame for damage or loose mounting.</td>
<td></td>
</tr>
<tr>
<td>RIDEWELL AIR SUSPENSION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspension Inspection</td>
<td>First 1,000 &amp; 3,000 miles</td>
<td>For Ridewell information, see pages 82. Check torque before vehicle is placed in service and at regular intervals.</td>
<td></td>
</tr>
</tbody>
</table>

## ENGINE BELT CHART

<table>
<thead>
<tr>
<th>A-3000 ENGINE</th>
<th>BELTS</th>
<th>BLUE BIRD No.</th>
<th>VENDOR No.</th>
<th>BELT DIMENSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caterpillar 3116T &amp; 3116TA Fan / Alt.</td>
<td>1454636</td>
<td>K080580</td>
<td>8 Groove x 58.00</td>
<td></td>
</tr>
<tr>
<td>Water Pump</td>
<td>1468370</td>
<td>9350</td>
<td>50 x 35.25</td>
<td></td>
</tr>
<tr>
<td>Freon Comp.</td>
<td>715GY17437(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cummins 8.3T &amp; 8.3TA Fan / Alt.</td>
<td>*</td>
<td>3911572</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Pump</td>
<td>*</td>
<td>3911572</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freon Comp.</td>
<td>1448471 RH</td>
<td>715GY17456(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1448489 LH</td>
<td>715GY17470(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-4000 ENGINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caterpillar 3116T &amp; 3116TA Fan / Alt.</td>
<td>1454628</td>
<td>K030510</td>
<td>8 Groove x 51.00</td>
<td></td>
</tr>
<tr>
<td>Water Pump</td>
<td>*</td>
<td>9350</td>
<td>50 x 35.25</td>
<td></td>
</tr>
<tr>
<td>Freon Comp.</td>
<td>1467794</td>
<td>715GY180(2)</td>
<td>5/8 x 80</td>
<td></td>
</tr>
<tr>
<td>Cummins 8.3T &amp; 8.3TA Fan / Alt.</td>
<td>*</td>
<td>3911572</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Pump</td>
<td>*</td>
<td>3911572</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freon Comp.</td>
<td>1403740</td>
<td>715GY1777(2)</td>
<td>5/8 x 77</td>
<td></td>
</tr>
</tbody>
</table>

* These belts supplied with engines.
# AXLE MAINTENANCE CHART

## General Instructions

- See Rockwell Int. Field Maintenance Manual. Keep oil to level of filler plug. Drain & refill at first 1,000 to 3,000 miles and then at recommended intervals. Check level testing plug in side of carrier housing. Use Hypoid gear oil SAE 140 or SAE 85 W/140 or SAE 80 W/140. See key No.2 page 89.
- See key No.3 page 89.
- See page 81.
- See key No.4 page 89.
- See page 79.
- See Ross Steering Gear Bulletin TAS-103 & Service Manual. 1 Grease fitting on rear of gear. Use hand grease gun only. Use NLGI Grade No. 2 Grease. See key No.7 page 89.

## Operation

<table>
<thead>
<tr>
<th>AXLE AXLE</th>
<th>Service Intervals</th>
<th>Months / Miles Whichever Occurs First</th>
<th>General Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Rear Axle</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check Lubricant</td>
<td></td>
<td></td>
<td>See Rockwell Int. Field Maintenance Manual. Keep oil to level of filler plug. Drain &amp; refill at first 1,000 to 3,000 miles and then at recommended intervals. Check level testing plug in side of carrier housing. Use Hypoid gear oil SAE 140 or SAE 85 W/140 or SAE 80 W/140. See key No.2 page 89.</td>
</tr>
<tr>
<td>Change Lubricant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspect Vent</td>
<td></td>
<td></td>
<td>See page 81. See key No.3 page 89.</td>
</tr>
<tr>
<td>Wheel Bearing Adjustment</td>
<td>As Required</td>
<td></td>
<td>See page 81.</td>
</tr>
<tr>
<td><strong>Front Axle</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricate King Pin</td>
<td></td>
<td></td>
<td>4 Fittings. Use NLGI Grade No. 2 Grease. See key No.4 page 89.</td>
</tr>
<tr>
<td>Lubricate Tie Rod</td>
<td></td>
<td></td>
<td>2 Fittings. Use NLGI Grade No. 2 Grease. See key No.5 page 89.</td>
</tr>
<tr>
<td>Wheel Bearing Adjustment</td>
<td>As Required</td>
<td></td>
<td>See page 81.</td>
</tr>
<tr>
<td>Inspect Alignment and Component Wear</td>
<td>If Tire Wear Indicates</td>
<td>Caster 1º- 2º pos. Camber 1/4º pos. LH, 0º RH, (Toe-In 0 to 1/16&quot;) with spring suspension. Caster 3º- 4º pos. with air suspension. Axle settings are same for radial and bias ply tires.</td>
<td></td>
</tr>
<tr>
<td><strong>Front Axle Steering</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check Hydraulic Reservoir Fluid Level</td>
<td></td>
<td></td>
<td>Check level sight glass. Use 10W-30 weight motor oil.</td>
</tr>
<tr>
<td>Change Reservoir Filter</td>
<td></td>
<td></td>
<td>More frequent filter changes may be necessary in a dusty environment. BB filter #2108199.</td>
</tr>
<tr>
<td>Lubricate Drag Rod</td>
<td></td>
<td></td>
<td>2 Fittings. Use NLGI Grade No. 2 Grease. See key No.6 page 89.</td>
</tr>
<tr>
<td>Inspect Power Steering Pump</td>
<td></td>
<td></td>
<td>Check for leakage around the shaft or housing. If leak is evident (fluid oozing out), it should be corrected immediately.</td>
</tr>
<tr>
<td>Inspect Steering Gear</td>
<td></td>
<td></td>
<td>Check for leakage around the shaft or housing. If leak is evident (fluid oozing out), it should be corrected immediately. See key No.7 page 89.</td>
</tr>
<tr>
<td>Index Pitman Arm</td>
<td>If Arm is Removed</td>
<td></td>
<td>See page 79.</td>
</tr>
<tr>
<td>Lubricate Steering Column</td>
<td></td>
<td></td>
<td>Lubricate the slide. Access to slide is obtained by removing rubber boot. Use NLGI Grade No. 2 Grease.</td>
</tr>
<tr>
<td>Adjust Steering Gear Relief Valve</td>
<td>As Required</td>
<td></td>
<td>See page 79.</td>
</tr>
<tr>
<td>Adjust Axle Stops</td>
<td>As Required</td>
<td></td>
<td>See page 80.</td>
</tr>
<tr>
<td>Lubricate Steering Gear</td>
<td></td>
<td></td>
<td>See Ross Steering Gear Bulletin TAS-103 &amp; Service Manual. 1 Grease fitting on rear of gear. Use hand grease gun only. Use NLGI Grade No. 2 Grease. See key No.7 page 89.</td>
</tr>
<tr>
<td><strong>Tires</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check Tires</td>
<td>Weekly</td>
<td></td>
<td>See page 52.</td>
</tr>
</tbody>
</table>
### BRAKE MAINTENANCE CHART

#### General Instructions

*Service Intervals to be performed on a continuing basis. Example: 1 / 3,000 means every month or every 3,000 miles.

#### AIR BRAKE SYSTEM

<table>
<thead>
<tr>
<th>Operation</th>
<th>Service Intervals</th>
<th>General Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Brake Operation</td>
<td></td>
<td>See page 73.</td>
</tr>
<tr>
<td>Clean &amp; Replace Air Comp. Filters</td>
<td></td>
<td>See Bendix Air Brake Handbook. Bendix filter #243009. BB #1339993.</td>
</tr>
<tr>
<td>Clean Governor</td>
<td>●</td>
<td>See Bendix Air Brake Handbook. Disassemble all valves and lubricate at 100,000 miles.</td>
</tr>
<tr>
<td>Inspect Bendix Air Dryer</td>
<td>●</td>
<td>See Bendix Air Brake Handbook &amp; Service Data sheet SD-08-02.</td>
</tr>
<tr>
<td>Inspect &amp; Clean Cyclo-gard Air Dryer</td>
<td>●</td>
<td>See Cyclo-gard Air Dryer Form #313.</td>
</tr>
<tr>
<td>Clean Anchorlok Air Dryer Tank and Flush Valve</td>
<td>●</td>
<td>See Anchorlok Air Dryer Service Instructions. Service in spring and fall.</td>
</tr>
<tr>
<td>Inspect Heated Reservoir Drain Valve</td>
<td></td>
<td>See Stark Expello Valve Form S-103. Maintenance-free no adjustment or cleaning necessary.</td>
</tr>
<tr>
<td>Drain Air Tanks</td>
<td></td>
<td>Drain condensation.</td>
</tr>
<tr>
<td>Check Pop-Off Valves</td>
<td>●</td>
<td>See Bendix Air Brake Handbook. Disassemble all valves and lubricate at 100,000 miles.</td>
</tr>
<tr>
<td>Check Single &amp; Double Check Valves</td>
<td>●</td>
<td>See Bendix Air Brake Handbook. Disassemble all valves and lubricate at 100,000 miles.</td>
</tr>
<tr>
<td>Clean &amp; Lube Brake Valve</td>
<td>●</td>
<td>See Bendix Air Brake Handbook. Disassemble all valves and lubricate at 100,000 miles.</td>
</tr>
<tr>
<td>Clean Relay Valves</td>
<td>●</td>
<td>See Bendix Air Brake Handbook. Disassemble all valves and lubricate at 100,000 miles.</td>
</tr>
<tr>
<td>Clean Spring Brake Valves</td>
<td>●</td>
<td>See Bendix Air Brake Handbook. Disassemble all valves and lubricate at 100,000 miles.</td>
</tr>
<tr>
<td>Clean Parking Brake Valve</td>
<td>●</td>
<td>See Bendix Air Brake Handbook. Disassemble all valves and lubricate at 100,000 miles.</td>
</tr>
<tr>
<td>Clean Quick Release Valves</td>
<td>●</td>
<td>See Bendix Air Brake Handbook. Disassemble all valves and lubricate at 100,000 miles.</td>
</tr>
<tr>
<td>Inspect Brake Chambers</td>
<td>●</td>
<td>See Bendix Air Brake Handbook. Disassemble all valves and lubricate at 100,000 miles.</td>
</tr>
<tr>
<td>Clean Pressure Protection Valves</td>
<td></td>
<td>See Bendix Air Brake Handbook. Disassemble all valves and lubricate at 100,000 miles.</td>
</tr>
</tbody>
</table>

#### SHOE-TYPE BRAKES (AIR)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Service Intervals</th>
<th>General Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brake Lube &amp; Adjustment</td>
<td>●</td>
<td>See Rockwell Field Maintenance Manual No. 4. Also see page 73.</td>
</tr>
<tr>
<td>Reline Brakes</td>
<td>As required</td>
<td>Reline when thickness of lining is no more than 1/4&quot; at its thinnest point.</td>
</tr>
<tr>
<td>Lubricate Brake Camshaft</td>
<td>●</td>
<td>See Rockwell Field Maintenance Manual No. 4.</td>
</tr>
<tr>
<td>Lube Brake Slack Adjusters</td>
<td>●</td>
<td>Use 0-617-A or 0-617-B grease. See key No.9 page 89.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use NLGI Grade No. 1 Grease. (Special Stopmaster Grease) See key No.10. page 89.</td>
</tr>
</tbody>
</table>
## CHASSIS COMPONENT MAINTENANCE CHART

<table>
<thead>
<tr>
<th>Operation</th>
<th>Service Intervals *</th>
<th>Months / Miles Whichever Occurs First</th>
<th>General Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 / 3,000</td>
<td>3 / 3,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 / 6,000</td>
<td>6 / 12,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 / 24,000</td>
<td>24 / 48,000</td>
<td></td>
</tr>
<tr>
<td><strong>ACCELERATOR SYSTEM (AAFE)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspect Cable</td>
<td></td>
<td></td>
<td>Check cable for proper connection, cracking, abrasion or deterioration. No lubrication required.</td>
</tr>
<tr>
<td><strong>ELECTRICAL SYSTEM</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check Battery Water Level</td>
<td></td>
<td></td>
<td>Use distilled water to fill.</td>
</tr>
<tr>
<td>Check Battery Posts</td>
<td></td>
<td></td>
<td>Clean more often if corrosion appears. Use heavy grease to help prevent corrosion.</td>
</tr>
<tr>
<td>Inspect Alternator</td>
<td></td>
<td></td>
<td>See Delco-Remy Service Bulletin1G-266</td>
</tr>
<tr>
<td>Inspect Quick Starting Aid</td>
<td></td>
<td></td>
<td>Check system for proper operation. Check wiring and tubing for proper connection and deterioration. Replace parts as necessary.</td>
</tr>
<tr>
<td>Inspect Engine Block Heaters</td>
<td></td>
<td></td>
<td>Check wiring and hoses for proper connection, cracking, abrasion and deterioration. Replace parts as necessary.</td>
</tr>
<tr>
<td>Inspect Electric Fuel Transfer Valves</td>
<td></td>
<td></td>
<td>Check wiring and hoses for proper connection, cracking, abrasion and deterioration. Replace parts as necessary.</td>
</tr>
<tr>
<td><strong>AUTOMATIC TRANSMISSION</strong></td>
<td>Daily</td>
<td></td>
<td>See Allison Operators Manual. Use Dexron or Dexron II fluid. See key No.11 page 89.</td>
</tr>
<tr>
<td>Check Fluid Level</td>
<td></td>
<td></td>
<td>See Allison Operators Manual. Use Dexron or Dexron II fluid. See key No.11 page 89.</td>
</tr>
<tr>
<td>Change Fluid</td>
<td></td>
<td>1st 5,000 Miles then at Normal Oil Change Intervals</td>
<td>Filter located on RH side of transmission. Filter - LF3342 or #0998542</td>
</tr>
<tr>
<td>Change Internal Filter</td>
<td></td>
<td></td>
<td>Remove transmission fluid pan.</td>
</tr>
<tr>
<td>Check Vent</td>
<td></td>
<td></td>
<td>See page 70.</td>
</tr>
<tr>
<td>Inspect Shift Cable</td>
<td></td>
<td></td>
<td>No lubrication required.</td>
</tr>
<tr>
<td>Adjust Shift Cable</td>
<td></td>
<td></td>
<td>See page 65.</td>
</tr>
<tr>
<td>Change Trans.Modulator (AAFE)</td>
<td></td>
<td></td>
<td>See Williams Control Publication SB775B. Change per air throttle recommendations.</td>
</tr>
<tr>
<td><strong>DRIVELINES</strong></td>
<td></td>
<td></td>
<td>See Spicer Service Manual.</td>
</tr>
<tr>
<td>Inspect Driveshaft</td>
<td></td>
<td></td>
<td>See Spicer Service Manual. Use NLGI Grade No. 1 or 2 Grease. See key No.12 page 89.</td>
</tr>
<tr>
<td>Lubricate Universal Joint</td>
<td></td>
<td></td>
<td>See Spicer Service Manual. Use NLGI Grade No. 1 or 2 Grease. See key No.13 page 89.</td>
</tr>
<tr>
<td>Lubricate Slip Joint</td>
<td></td>
<td></td>
<td>See Spicer Service Manual. Use NLGI Grade No. 1 or 2 Grease. See key No.13 page 89.</td>
</tr>
<tr>
<td><strong>MANUAL TRANS. (AAFE)</strong></td>
<td></td>
<td></td>
<td>See Spicer Service Manual. Keep oil to level of filler plug. Drain and refill at 1st 1,000 to 4,000 miles. Then at 20,000 mile intervals. Use heavy duty engine oil SAE 30, 40 or 50 meeting spec. MIL-L-21041B or MIL-L-46152.</td>
</tr>
<tr>
<td>Check Fluid Level</td>
<td></td>
<td></td>
<td>Fill to 1/2&quot; from top. See pages 77 &amp; 78. Use DOT-3 Motor Vehicle brake fluid to meet FMVSS 116 Federal Spec. VVB-880 SAE J1703.</td>
</tr>
<tr>
<td>Change Fluid</td>
<td></td>
<td></td>
<td>1 Fitting (lubricate sparingly) Use NLGI Grade No. 2.</td>
</tr>
<tr>
<td>Check Clutch Master Cylinder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&amp; Slave Cylinder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricate ClutchRelease Bearing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**BODY COMPONENT MAINTENANCE CHART**

<table>
<thead>
<tr>
<th>Operation</th>
<th>Service Intervals</th>
<th>General Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>OUTWARD OPENING DOOR</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjust Door Linkage Rod</td>
<td>As Required</td>
<td>Adjust door linkage rod for proper open/closed position.</td>
</tr>
<tr>
<td><strong>JACKNIFE DOOR</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjust Door Control Rod</td>
<td></td>
<td>Adjust door control rod for proper open &amp; closed position. See page 31.</td>
</tr>
<tr>
<td>Adjust Roller Bracket</td>
<td></td>
<td>Adjust roller bracket for easier door operation. See page 31.</td>
</tr>
<tr>
<td>Adjust Control Rod Bracket</td>
<td></td>
<td>Adjust bracket to prevent pivot pin binding. See page 31.</td>
</tr>
<tr>
<td>Lubricate Hinge Pin</td>
<td></td>
<td>Lubricate each hinge lug. See page 31. Use LPS No. 1 lubricant.</td>
</tr>
<tr>
<td><strong>POWER JACKNIFE DOOR</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricate Hinge</td>
<td></td>
<td>Lubricate hinge pin. Use LPS No. 1 lubricant.</td>
</tr>
<tr>
<td>Adjust Air Pressure &amp; Switch</td>
<td></td>
<td>See page 32.</td>
</tr>
<tr>
<td><strong>AIR STOP ARM</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubrication</td>
<td></td>
<td>No lubrication required.</td>
</tr>
<tr>
<td>Adjustment</td>
<td>As Required</td>
<td>Adjust air pressure for proper opening and closing of stop arm.</td>
</tr>
<tr>
<td><strong>ELECTRIC STOP ARM</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubrication</td>
<td></td>
<td>Lubricate breakaway hinge at four (4) pivot points. Use Tri-Flow™ (DuPont) lubricant.</td>
</tr>
<tr>
<td>Inspect Outer Fasteners</td>
<td></td>
<td>Check outer fasteners for tightness.</td>
</tr>
<tr>
<td>Inspect Internal Fasteners</td>
<td></td>
<td>Check inner fasteners for tightness.</td>
</tr>
<tr>
<td><strong>VANDAL LOCKS</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricate Entrance Door</td>
<td></td>
<td>Lubricate bushing &amp; shaft in center at base of lock handle. See page 34. Use &quot;Apply™&quot; lubricant.</td>
</tr>
<tr>
<td>Lubricate Entrance Door Key Lock</td>
<td></td>
<td>Spray lubricant into key lock. Use &quot;Apply™&quot; lubricant.</td>
</tr>
<tr>
<td>Lubricate Sliding Bolt</td>
<td></td>
<td>Lubricate sliding bolt mechanism. Use LPS No. 1 lubricant.</td>
</tr>
<tr>
<td>Inspect &amp; Adjust Emerg. Door</td>
<td></td>
<td>No lubrication and adjustment required.</td>
</tr>
<tr>
<td><strong>BUS BODY CARE</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wash</td>
<td>As required</td>
<td>See page 35.</td>
</tr>
<tr>
<td><strong>EMERGENCY EXITS</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricate Lock Mechanisms</td>
<td></td>
<td>Spray lubricant into lock mechanism. Use Silicon spray.</td>
</tr>
<tr>
<td>Lubricate Roof Hatch</td>
<td></td>
<td>Spray silicon lubricant into lock mechanism. Work lock handle back &amp; forth to insure smooth operation. See page 24. Use Silicon spray.</td>
</tr>
<tr>
<td>Lubricate Door Hinge</td>
<td></td>
<td>Spray lubricant into hinge lugs. Use LPS No. 1.</td>
</tr>
<tr>
<td>Lubricate Rear Emerg. Door</td>
<td></td>
<td>Grease with door closed. Use low temp grease per ASTM D4950 GC-LB Grade 2. -60 deg. to 350 deg. F. One fitting per hinge</td>
</tr>
<tr>
<td>Positive Hold Open Hinge</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>EMERGENCY EQUIPMENT</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspect All Mounting Fasteners</td>
<td></td>
<td>Inspect all emergency equipment mounting bracket fasteners to insure tightness.</td>
</tr>
<tr>
<td><strong>DESTINATION SIGNS</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricate Hinges</td>
<td></td>
<td>Lubricate all hinge lugs. Use lightweight lubricating oil.</td>
</tr>
<tr>
<td>Lubricate Roller Gears</td>
<td></td>
<td>Lubricate roller gears where required. Use lightweight grease such as (White Lube).</td>
</tr>
<tr>
<td>Check &amp; Adjust Curtain</td>
<td></td>
<td>See page 9.</td>
</tr>
<tr>
<td>Replace Bulb</td>
<td>As Required</td>
<td></td>
</tr>
<tr>
<td><strong>WINDOWS</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricate Latch</td>
<td></td>
<td>Spray lubricant into window latch mechanism. Use Silicon spray.</td>
</tr>
<tr>
<td>Lubricate Window Slides</td>
<td></td>
<td>Spray lubricant into sliding frame of window. Use Silicon spray.</td>
</tr>
</tbody>
</table>
### BODY COMPONENT MAINTENANCE CHART

<table>
<thead>
<tr>
<th>Operation</th>
<th>Service Intervals *</th>
<th>Months / Miles Whichever Occurs First</th>
<th>General Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEATERS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check Heater Hoses</td>
<td></td>
<td></td>
<td>Check hoses for kinks, cracks or other visible signs of damage. See page 43.</td>
</tr>
<tr>
<td>Clean Heater Coil &amp; RH Front</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heater Air Filter</td>
<td></td>
<td></td>
<td>Keep air flow passage free of dust &amp; dirt by cleaning w/compressed air or vacuum &amp; a soft bristle brush. Straighten damaged fins w/ a fin comb. See page 43.</td>
</tr>
<tr>
<td>Check Motor Wheels &amp; Fans</td>
<td></td>
<td></td>
<td>Check wheels and fans for obstructions or damage by running each fan alone, then listen and feeling for irregularity. Replace damaged wheels or fans to prevent vibratory damage.</td>
</tr>
<tr>
<td>Check Heater Panels &amp; Housing</td>
<td></td>
<td></td>
<td>Fasteners which connect and retain structural &amp; access panels should be checked and tightened as necessary.</td>
</tr>
<tr>
<td>Tighten Heater Hose Clamps</td>
<td>1st 1,000 Miles and</td>
<td></td>
<td>Heater hose clamps are located at the underseat heater coil, behind the access door in the heater hose covering immediately forward of the left front wheelhousing &amp; under the floor near right front and driver's heaters.</td>
</tr>
<tr>
<td></td>
<td>Annually Thereafter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BODY MOUNTING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspect Mounting Bolts</td>
<td></td>
<td></td>
<td>See page 29.</td>
</tr>
<tr>
<td>MIRRORS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjust Mirrors</td>
<td>As required</td>
<td>Loosen adjusting nuts, make adjustment, then retighten nuts.</td>
<td></td>
</tr>
<tr>
<td>SEATS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspect Mounting Fasteners</td>
<td></td>
<td></td>
<td>Tighten fasteners if required.</td>
</tr>
<tr>
<td>Inspect Cushion Attachments</td>
<td>Weekly</td>
<td></td>
<td>Tighten with Phillips-head screwdriver, if required.</td>
</tr>
<tr>
<td>Inspect Upholstery</td>
<td></td>
<td></td>
<td>Inspect for cuts, tears, wear and soiled areas.</td>
</tr>
<tr>
<td>Lubricate Driver's Seat</td>
<td></td>
<td></td>
<td>Apply lubricant to all working part joints. Use Aerosol Lithium base grease.</td>
</tr>
<tr>
<td>Inspect Seat Belts</td>
<td>Weekly</td>
<td></td>
<td>Inspect for torn or frayed areas.</td>
</tr>
<tr>
<td>Inspect Seat Belt Buckles</td>
<td>Weekly</td>
<td></td>
<td>Inspect for adjustability and proper operation.</td>
</tr>
<tr>
<td>Lubricate Seat Belt Buckles</td>
<td>As Required</td>
<td></td>
<td>Lubricate buckles to insure ease of operation. Use Graphite-type lubricant.</td>
</tr>
<tr>
<td>Clean Seat Belt Webbing</td>
<td>As Required</td>
<td></td>
<td>Clean using warm water and detergent solution.</td>
</tr>
</tbody>
</table>

### WHEELCHAIR LIFT MAINTENANCE CHART

<table>
<thead>
<tr>
<th>Operation</th>
<th>Service Intervals *</th>
<th>Months / Miles Whichever Occurs First</th>
<th>General Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAUN</td>
<td></td>
<td></td>
<td>See Braun L205 Owner's Manual. Use light oil 30 weight or equivalent.</td>
</tr>
<tr>
<td>Grease Safety Barrier Latch</td>
<td>1</td>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td>Lube Hinges and Pins</td>
<td>1 or 100 cycles</td>
<td>1,000</td>
<td>See Braun L205 Owner's Manual. Use light oil 30 weight or equivalent.</td>
</tr>
<tr>
<td>Check Cylinder Chains, Hoses and Wires</td>
<td>12</td>
<td>12,000</td>
<td>See Braun L205 Owner's Manual.</td>
</tr>
<tr>
<td>Lube Bridge Plate Hinge and Pivot Points</td>
<td>3 or 600 cycles</td>
<td>5,000</td>
<td></td>
</tr>
<tr>
<td>Clean and Lube Fold Cam Slot, Platform Cam Slots and Handrail V-block</td>
<td>3 or 600 cycles</td>
<td>5,000</td>
<td>See Collins (Mobile Tech) Maintenance &amp; Service Manual. Use #2 lithium grease.</td>
</tr>
<tr>
<td>Check Fluid Level</td>
<td>3 or 600 cycles</td>
<td>5,000</td>
<td>See Collins (Mobile Tech) Maintenance &amp; Service Manual. Use aircraft hydraulic fluid H-5606.</td>
</tr>
</tbody>
</table>

Service Intervals *

*Service Intervals to be performed on a continuing basis. Example: 1 / 3,000 means every month or every 3,000 miles.
GENERAL DATA

DIMENSIONS:

- Headroom - 74” to 77”
- Exterior height - approximately 118” to 121”
- Exterior height w/ AC - add 16”
- Exterior width - 96”
- Exterior length w/ AC - add 7”
- Interior width - 90 3/4”

FLUID CAPACITIES

<table>
<thead>
<tr>
<th>ENGINE</th>
<th>Engine Fluid</th>
<th>Transmission Fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crankcase Oil</td>
<td>Manual w/ Filter</td>
</tr>
<tr>
<td></td>
<td>w/Filter</td>
<td>Auto. MT 643 w/Filter</td>
</tr>
<tr>
<td></td>
<td>Cooling System</td>
<td>w/o Filter</td>
</tr>
<tr>
<td>Cummins 8.3T</td>
<td>25.2 qts</td>
<td>17 pts.</td>
</tr>
<tr>
<td>Cummins 8.3 TA</td>
<td>25.2 qts.</td>
<td>17 pts.</td>
</tr>
<tr>
<td>Cat 3116T</td>
<td>16 qts.</td>
<td>17 pts.</td>
</tr>
<tr>
<td>Cat 3116TA</td>
<td>16 qts.</td>
<td>17 pts.</td>
</tr>
</tbody>
</table>

MD 3060 Transmission
20 qts.

REAR AXLE FLUID CAPACITIES

<table>
<thead>
<tr>
<th>REAR AXLE</th>
<th>Fluid Type</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spicer M-230-T</td>
<td>Two Speed</td>
<td>35 pts.</td>
</tr>
<tr>
<td>Rockwell R-125</td>
<td>Single Speed</td>
<td>28 pts.</td>
</tr>
<tr>
<td>Rockwell R-128</td>
<td>Single Speed</td>
<td>28 pts.</td>
</tr>
<tr>
<td>Rockwell RS-23-240</td>
<td>Two Speed</td>
<td>42.3 pts.</td>
</tr>
</tbody>
</table>

ENGINE OIL PRESSURE

- Cummins 35-50 PSI @ 2200 RPM
- Cat 3116 45-60 PSI @ 2600 RPM

HYDRAULIC FAN & STEERING CAPACITIES

<table>
<thead>
<tr>
<th>HYDRAULIC FAN</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cummins 8.3TA</td>
<td>20 qts.</td>
</tr>
<tr>
<td>Cat 3116TA</td>
<td>22 qts.</td>
</tr>
</tbody>
</table>
## INDEX

<table>
<thead>
<tr>
<th>Access Doors</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Air Brakes</strong></td>
<td>73</td>
</tr>
<tr>
<td>Air Brake Adjustment</td>
<td>73</td>
</tr>
<tr>
<td>Actuator Installation &amp; Brake Adjustment</td>
<td>75</td>
</tr>
<tr>
<td>Draining Air Tanks</td>
<td>73</td>
</tr>
<tr>
<td>Manual Spring Brake Release</td>
<td>75</td>
</tr>
<tr>
<td>MGM Piston Type Brakes</td>
<td>74</td>
</tr>
<tr>
<td>MGM Service &amp; Parking Brake</td>
<td>74</td>
</tr>
<tr>
<td>Parking</td>
<td>73</td>
</tr>
<tr>
<td>Shrader Valve</td>
<td>74</td>
</tr>
<tr>
<td>Spring Brake Application</td>
<td>75</td>
</tr>
<tr>
<td><strong>All American Pitman Arm</strong></td>
<td>79</td>
</tr>
<tr>
<td><strong>Allison Automatic Transmission</strong></td>
<td>65</td>
</tr>
<tr>
<td>Accelerator Control</td>
<td>68</td>
</tr>
<tr>
<td>Allison Transmission Cable Adjustments</td>
<td>65</td>
</tr>
<tr>
<td>Check Transmission Light</td>
<td>67</td>
</tr>
<tr>
<td>Cold Weather Start MD3060</td>
<td>69</td>
</tr>
<tr>
<td>Downshift Control MT643</td>
<td>68</td>
</tr>
<tr>
<td>Downshift or Reverse Inhibitor MD3060</td>
<td>68</td>
</tr>
<tr>
<td>MD3060 Gear Selection</td>
<td>66</td>
</tr>
<tr>
<td>MD3060 World Transmission</td>
<td>66</td>
</tr>
<tr>
<td>MT 643</td>
<td>65</td>
</tr>
<tr>
<td>Transmission Breather</td>
<td>70</td>
</tr>
<tr>
<td>Transmission Oil Temperature</td>
<td>69</td>
</tr>
<tr>
<td>Two Speed Axle w/ Allison Trans.</td>
<td>68</td>
</tr>
<tr>
<td>Using Engine to Slow the Vehicle</td>
<td>69</td>
</tr>
<tr>
<td>Using the Hydraulic Retarder</td>
<td>67</td>
</tr>
<tr>
<td><strong>Axle Maintenance Chart</strong></td>
<td>93</td>
</tr>
<tr>
<td>Front Axle</td>
<td>93</td>
</tr>
<tr>
<td>Front Axle Steering</td>
<td>93</td>
</tr>
<tr>
<td>Rear Axle</td>
<td>93</td>
</tr>
<tr>
<td>Tires</td>
<td>93</td>
</tr>
<tr>
<td><strong>Body Component Maintenance Chart</strong></td>
<td>96, 97</td>
</tr>
<tr>
<td>Air Stop Arms</td>
<td>96</td>
</tr>
<tr>
<td>Body Mounting</td>
<td>97</td>
</tr>
<tr>
<td>Bus Body Care</td>
<td>96</td>
</tr>
<tr>
<td>Destination Signs</td>
<td>96</td>
</tr>
<tr>
<td>Electric Stop Arms</td>
<td>96</td>
</tr>
<tr>
<td>Emergency Equipment</td>
<td>96</td>
</tr>
<tr>
<td>Emergency Exits</td>
<td>96</td>
</tr>
<tr>
<td>Heaters</td>
<td>97</td>
</tr>
<tr>
<td>Jackknife Door</td>
<td>96</td>
</tr>
<tr>
<td>Mirrors</td>
<td>96</td>
</tr>
<tr>
<td>Outward Opening Door</td>
<td>96</td>
</tr>
<tr>
<td>Power Jackknife Door</td>
<td>96</td>
</tr>
<tr>
<td>Seats</td>
<td>96</td>
</tr>
<tr>
<td>Vandal Locks</td>
<td>96</td>
</tr>
<tr>
<td>Windows</td>
<td>96</td>
</tr>
<tr>
<td><strong>Body Tie Down</strong></td>
<td>29</td>
</tr>
<tr>
<td><strong>Brake Maintenance Chart</strong></td>
<td>94</td>
</tr>
<tr>
<td>Air Brake System</td>
<td>94</td>
</tr>
<tr>
<td>Hydraulic Brakes (Disc)</td>
<td>94</td>
</tr>
<tr>
<td>Shoe-Type Brakes (Air)</td>
<td>94</td>
</tr>
<tr>
<td><strong>Chassis Component Maintenance Chart</strong></td>
<td>95</td>
</tr>
<tr>
<td>Accelerator System</td>
<td>95</td>
</tr>
<tr>
<td>Automatic Transmission</td>
<td>95</td>
</tr>
<tr>
<td>Drivelines</td>
<td>95</td>
</tr>
<tr>
<td>Electrical System</td>
<td>95</td>
</tr>
<tr>
<td>Manual Transmission</td>
<td>95</td>
</tr>
<tr>
<td><strong>Circuit Breakers</strong></td>
<td>19</td>
</tr>
<tr>
<td><strong>Coach Identification</strong></td>
<td>4</td>
</tr>
<tr>
<td>Axle Record &amp; Chassis Service Number</td>
<td>5</td>
</tr>
<tr>
<td>Body Serial &amp; Service Number</td>
<td>5</td>
</tr>
<tr>
<td>Vehicle Certification</td>
<td>4</td>
</tr>
<tr>
<td><strong>Compressed Natural Gas</strong></td>
<td>57</td>
</tr>
<tr>
<td>Antiknock Properties</td>
<td>63</td>
</tr>
<tr>
<td>Code of Federal Regulations</td>
<td>58</td>
</tr>
<tr>
<td>Cold Start</td>
<td>64</td>
</tr>
<tr>
<td>Compressed Natural Gas Filters</td>
<td>61</td>
</tr>
<tr>
<td>Compressed Natural Gas Fuel</td>
<td>60</td>
</tr>
<tr>
<td>Energy Conversions</td>
<td>63</td>
</tr>
<tr>
<td>Flammability</td>
<td>63</td>
</tr>
<tr>
<td>Fuel Composition</td>
<td>61</td>
</tr>
<tr>
<td>Fuel System Description</td>
<td>59</td>
</tr>
<tr>
<td>Fuel Toxicity &amp; Safety</td>
<td>63</td>
</tr>
<tr>
<td>Introduction</td>
<td>57</td>
</tr>
<tr>
<td>Maintenance</td>
<td>64</td>
</tr>
<tr>
<td>National Fire Protection Association</td>
<td>58</td>
</tr>
<tr>
<td>Operation &amp; Maintenance of Components</td>
<td>64</td>
</tr>
<tr>
<td>Owner / Operators Responsibilities</td>
<td>58</td>
</tr>
<tr>
<td>Refueling</td>
<td>61</td>
</tr>
<tr>
<td>Safety Cautions &amp; Warnings</td>
<td>59</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>62</td>
</tr>
<tr>
<td>Starting Procedure</td>
<td>64</td>
</tr>
<tr>
<td>Vehicle Performance &amp; Emissions</td>
<td>63</td>
</tr>
<tr>
<td><strong>Cooling System</strong></td>
<td>79</td>
</tr>
<tr>
<td><strong>Cummins Engine Maintenance Chart</strong></td>
<td>90</td>
</tr>
<tr>
<td><strong>Destination Signs</strong></td>
<td>9</td>
</tr>
</tbody>
</table>

99
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doors</td>
<td>30</td>
</tr>
<tr>
<td>Electric Outward Opening Door</td>
<td>33</td>
</tr>
<tr>
<td>Jackknife Door</td>
<td>30</td>
</tr>
<tr>
<td>Power Door</td>
<td>32</td>
</tr>
<tr>
<td>Power Jackknife Door</td>
<td>31</td>
</tr>
<tr>
<td>Outward Opening Air Door</td>
<td>30</td>
</tr>
<tr>
<td>Outward Opening Door</td>
<td>30</td>
</tr>
<tr>
<td>Security Lock</td>
<td>33</td>
</tr>
<tr>
<td>Doran Warning Light Monitor</td>
<td>15</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>16</td>
</tr>
<tr>
<td>Repair Procedure</td>
<td>15</td>
</tr>
<tr>
<td>Tools &amp; Supplies Required</td>
<td>17</td>
</tr>
<tr>
<td>Electrical Systems</td>
<td>13</td>
</tr>
<tr>
<td>Emergency Equipment</td>
<td>22</td>
</tr>
<tr>
<td>Fire Axe / Crowbar</td>
<td>22</td>
</tr>
<tr>
<td>Fire Extinguisher</td>
<td>22</td>
</tr>
<tr>
<td>First Aid Kit</td>
<td>22</td>
</tr>
<tr>
<td>Flare Kit</td>
<td>22</td>
</tr>
<tr>
<td>Recommended Warning Device Positioning</td>
<td>23</td>
</tr>
<tr>
<td>Triangular Warning Device</td>
<td>22</td>
</tr>
<tr>
<td>Emergency Exits</td>
<td>24</td>
</tr>
<tr>
<td>Engine Access</td>
<td>36</td>
</tr>
<tr>
<td>Hood Removal for Mechanics Access</td>
<td>37</td>
</tr>
<tr>
<td>Rear Side Engine Compartment Doors</td>
<td>37</td>
</tr>
<tr>
<td>Engine Belt Chart</td>
<td>92</td>
</tr>
<tr>
<td>Engine Operating Instructions</td>
<td>54</td>
</tr>
<tr>
<td>Air Intake Heater (Cat 3116)</td>
<td>56</td>
</tr>
<tr>
<td>Antifreeze</td>
<td>56</td>
</tr>
<tr>
<td>Cold Start Aid</td>
<td>55</td>
</tr>
<tr>
<td>Diesel Engine Starting Procedure</td>
<td>54</td>
</tr>
<tr>
<td>Engine High Idle Switch</td>
<td>55</td>
</tr>
<tr>
<td>Engine Warning System</td>
<td>56</td>
</tr>
<tr>
<td>Starting AARE from Rear</td>
<td>56</td>
</tr>
<tr>
<td>Starting With Boost Cables</td>
<td>55</td>
</tr>
<tr>
<td>Using Engine as a Brake</td>
<td>55</td>
</tr>
<tr>
<td>Front Access</td>
<td>28</td>
</tr>
<tr>
<td>AAFE</td>
<td>28</td>
</tr>
<tr>
<td>AARE</td>
<td>28</td>
</tr>
<tr>
<td>Front Access</td>
<td>4</td>
</tr>
<tr>
<td>AAFE</td>
<td>28</td>
</tr>
<tr>
<td>AARE</td>
<td>28</td>
</tr>
<tr>
<td>Fuel &amp; Lubricant Requirements</td>
<td>57</td>
</tr>
<tr>
<td>Diesel Fuel</td>
<td>57</td>
</tr>
<tr>
<td>Recommended Lubricant</td>
<td>57</td>
</tr>
<tr>
<td>General Data</td>
<td>98</td>
</tr>
<tr>
<td>Dimensions</td>
<td>98</td>
</tr>
<tr>
<td>Engine Oil Pressure</td>
<td>98</td>
</tr>
<tr>
<td>Fluid Capacities</td>
<td>98</td>
</tr>
<tr>
<td>Hydraulic Fan &amp; Steering Capacities</td>
<td>98</td>
</tr>
<tr>
<td>Rear Axle Fluid Capacities</td>
<td>98</td>
</tr>
<tr>
<td>Heaters</td>
<td>38</td>
</tr>
<tr>
<td>Care &amp; Cleaning of Defroster Fans</td>
<td>39</td>
</tr>
<tr>
<td>Defroster Fan Locations</td>
<td>40</td>
</tr>
<tr>
<td>Defrosting</td>
<td>39</td>
</tr>
<tr>
<td>Diffuser Adjustment</td>
<td>39</td>
</tr>
<tr>
<td>General Information</td>
<td>38</td>
</tr>
<tr>
<td>Heater Access</td>
<td>38</td>
</tr>
<tr>
<td>Heater Bleeding Instructions</td>
<td>40</td>
</tr>
<tr>
<td>Heater Cut Off Valve Location</td>
<td>42</td>
</tr>
<tr>
<td>Heater Defroster Location</td>
<td>40</td>
</tr>
<tr>
<td>Heater Hose Clamp Service</td>
<td>43, 44</td>
</tr>
<tr>
<td>Heater Operation</td>
<td>38</td>
</tr>
<tr>
<td>Heater Switch &amp; Outlet Location</td>
<td>38</td>
</tr>
<tr>
<td>Heater Water Capacity Chart</td>
<td>44</td>
</tr>
<tr>
<td>Hose Repair</td>
<td>43</td>
</tr>
<tr>
<td>Preventive Maintenance</td>
<td>43</td>
</tr>
<tr>
<td>Removal of Underseat Fan &amp; Motor Assy</td>
<td>41</td>
</tr>
<tr>
<td>Hydraulic Clutch Controls &amp; Adjustment for Manual Transmission (AAFE)</td>
<td>77</td>
</tr>
<tr>
<td>Clutch Slave Cylinder Push Rod Adj.</td>
<td>78</td>
</tr>
<tr>
<td>Hydraulic System</td>
<td>75</td>
</tr>
<tr>
<td>Hydraulic System Troubleshooting</td>
<td>76</td>
</tr>
<tr>
<td>Inspection</td>
<td>5</td>
</tr>
<tr>
<td>Daily Inspection</td>
<td>5</td>
</tr>
<tr>
<td>Prior to Placing New Bus in Service</td>
<td>5</td>
</tr>
<tr>
<td>Weekly Inspection</td>
<td>6</td>
</tr>
<tr>
<td>Instrument Panel &amp; Controls</td>
<td>8</td>
</tr>
<tr>
<td>Instrument Panel w/Dual Scale Gauges</td>
<td>8</td>
</tr>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Jacking Instructions</td>
<td>54</td>
</tr>
</tbody>
</table>
Transpec Safety Vent ............................................... 24
  Maintenance Cautions ........................................... 24
  Service & Repairs .............................................. 25

Two Speed Rear Axle Shift Control ..................... 70
  Axle Only Downshift ........................................... 71
  Axle Only Upshift ............................................. 71
  Split Downshift ................................................ 72
  Split Upshift .................................................... 72

Vandal Locks .......................................................... 34
  Emergency Door .................................................. 35
  Entrance Door .................................................... 34
  Sliding Bolt ....................................................... 34

Wheelbearing Adjustments .................................. 81
  Jam Nut Torque Specifications ............................. 82
  Torque Specifications ......................................... 81

Wheelchair Lift Maintenance Chart ..................... 97
  Braun Lift ........................................................ 97
  Collins Lift ....................................................... 97

Wheelchair Lifts ................................................... 25

Windows & Windshields ...................................... 45
  Entrance Door Glass Replacement ....................... 46
  Rear Vision Glass Replacement ............................ 47
  Split Sash Window & Glass Replacement ............... 45
  Transit Sliding Window Maintenance .................. 47
  Window Latch Replacement ................................ 46
  Windshield Glass Replacement ............................ 45

Windshield Wipers ............................................... 49
  Washer Solution Reservoir ................................ 49
  Wiper Arm Removal & Installation ..................... 49
  Wiper Assembly Replacement ............................ 49
  Wiper Refill Replacement .................................. 49